-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_parser.py
180 lines (154 loc) · 5.77 KB
/
main_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""Pipeline for parser training/testing."""
import argparse
import os
import os.path as osp
import pkbar
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from data.parser_dataset import ParserDataset, parser_collate_fn
from models.parser_cliport import Seq2TreeTransformer
import ipdb
st = ipdb.set_trace
def train_parser(model, data_loaders, args):
"""Train a language-to-program parser."""
# Set
writer = SummaryWriter(f'runs/{args.tensorboard_dir}')
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
start_epoch = 0
# st()
# Load
if osp.exists(args.parser_ckpnt):
checkpoint = torch.load(args.parser_ckpnt)
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"]
# Eval?
if args.eval:
model.eval()
test_acc = eval_parser(model, data_loaders['test'], args)
print(f"Test Accuracy: {test_acc}")
return model
# Go!
val_acc_prev_best = -1.0
for epoch in range(start_epoch, args.epochs):
print("Epoch: %d/%d" % (epoch + 1, args.epochs))
kbar = pkbar.Kbar(target=len(data_loaders['train']), width=25)
model.train()
# Train
for step, ex in enumerate(data_loaders['train']):
loss, _ = model(ex["raw_utterances"], ex["program_trees"])
kbar.update(step, [("loss", loss)])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print loss
writer.add_scalar(
'training_loss', loss.item(),
epoch * len(data_loaders['train']) + step
)
# Validate
val_acc = 0.0
if epoch > 15:
print("\nValidation")
val_acc = eval_parser(model, data_loaders['val'], args)
writer.add_scalar("val_acc", val_acc, epoch)
# Store
if epoch <= 2 or val_acc >= val_acc_prev_best:
print("Saving Checkpoint")
torch.save(
{
"epoch": epoch + 1,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
args.parser_ckpnt
)
val_acc_prev_best = val_acc
# Test
model.eval()
test_acc = eval_parser(model, data_loaders['test'], args)
print(f"Test Accuracy: {test_acc}")
return model
@torch.no_grad()
def eval_parser(model, data_loader, args):
"""Evaluate model on val/test data."""
model.eval()
kbar = pkbar.Kbar(target=len(data_loader), width=25)
num_correct = 0
num_examples = 0
val_accumulated = 0.0
debug = False
val_acc = 0
for step, ex in enumerate(data_loader):
try:
_, progs = model(
ex["raw_utterances"], ex['program_trees'],
teacher_forcing=False, compute_loss=False
)
num_correct += sum(
int(progs[i] == ex["program_lists"][i])
for i in range(len(progs))
)
if debug:
for i in range(len(progs)):
if progs[i] != ex["program_lists"][i]:
print(f"Raw utterance: {ex['raw_utterances'][i]}")
print(f"gt_prog: {ex['program_lists'][i]}\n")
print(f"predicted_prog: {progs[i]}")
num_examples += len(progs)
kbar.update(step, [("accuracy", num_correct / num_examples)])
val_acc = num_correct / num_examples
val_accumulated += val_acc
except RecursionError as _:
print("Recursion depth exceeded while evaluation")
continue
print(f"\nAccuracy: {val_accumulated/len(data_loader)}")
return val_acc
def main():
"""Run main training/test pipeline."""
data_path = "/projects/katefgroup/language_grounding/"
if not osp.exists(data_path):
data_path = 'data/' # or change this if you work locally
# Parse arguments
argparser = argparse.ArgumentParser()
argparser.add_argument(
"--checkpoint_path", default=osp.join(data_path, "checkpoints/")
)
argparser.add_argument("--checkpoint", default="parser_cliport_sep.pt")
argparser.add_argument("--epochs", default=512, type=int)
argparser.add_argument("--batch_size", default=32, type=int)
argparser.add_argument("--lr", default=1e-3, type=float)
argparser.add_argument("--wd", default=1e-7, type=float)
argparser.add_argument("--tensorboard_dir", default="exp1")
argparser.add_argument("--eval", action='store_true')
argparser.add_argument("--annos_path", default='data/cliport_program_annos.json', type=str)
args = argparser.parse_args()
args.parser_ckpnt = osp.join(args.checkpoint_path, args.checkpoint)
# Other variables
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
os.makedirs(args.checkpoint_path, exist_ok=True)
# Parser
parser_datasets = {
mode: ParserDataset(split=mode, annos_path=args.annos_path)
for mode in ('train', 'val', 'test')
}
data_loaders = {
mode: DataLoader(
parser_datasets[mode],
batch_size=args.batch_size,
collate_fn=parser_collate_fn,
shuffle=mode == 'train',
drop_last=mode == 'train',
num_workers=0
)
for mode in ['train', 'val', 'test']
}
# data_loaders['test'] = data_loaders['val']
train_parser( # tests also
Seq2TreeTransformer().to(device),
data_loaders, args
)
if __name__ == "__main__":
main()