-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
65 lines (52 loc) · 1.82 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import flask
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
K = tf.keras
class NeuralNet:
def __init__(self):
net = K.Sequential([
K.layers.Dense(100, input_shape=(3,), activation='relu'),
K.layers.Dense(100, activation='relu'),
K.layers.Dense(2, activation='softmax')
])
net.compile(
optimizer=K.optimizers.Adam(learning_rate=0.001),
loss=K.losses.SparseCategoricalCrossentropy(),
metrics=[K.metrics.SparseCategoricalAccuracy()]
)
self.net = net
self.X, self.Y = self.get_data()
self.scaler = StandardScaler().fit(self.X)
def predict(self, ar):
assert len(ar) == 3
probs = self.net.predict(self.scaler.transform(np.array(ar)[None, :]))[0]
amax = np.argmax(probs)
return int(amax), float(probs[amax])
def train_model(self):
self.net.fit(self.scaler.transform(self.X), self.Y, validation_split=0.05, epochs=500)
self.net.save('my_model')
def load_model(self):
self.net = K.models.load_model('my_model')
@staticmethod
def get_data():
X, Y = [], []
with open('haberman.data', 'r') as f:
for line in f:
cur = list(map(int, line.strip(' \t\r\n').split(',')))
X.append(cur[:3])
Y.append(cur[3] - 1)
X, Y = np.array(X), np.array(Y)
return X, Y
M = NeuralNet()
M.load_model()
# M.net = M.train_model()
app = flask.Flask(__name__)
@app.route('/api/nn_predict')
def predict():
if 'data' not in flask.request.args:
return 'ERROR: Please send data', 400
data = flask.request.args['data']
return flask.jsonify(M.predict(list(map(int, data.split(',')))))
if __name__ == '__main__':
app.run()