-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathSpearman.m
70 lines (61 loc) · 2.93 KB
/
Spearman.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
classdef Spearman < Metric
%SPEARMAN static class to calculate Spearman's rank correlation coefficient
%
% SPEARMAN methods:
% CALCULATEMETRIC - Computes the evaluation metric
% CALCULATECROSSVALMETRIC - Computes the evaluation metric as an error
%
% References:
% [1] C. Spearman
% The proof and measurement of association between two things
% Am. J. Psychol., 15 (1904), pp. 72-101
% [2] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero and
% P. A. Gutiérrez Metrics to guide a multi-objective evolutionary
% algorithm for ordinal classification, Neurocomputing, Vol. 135, July, 2014, pp. 21-31.
% https://doi.org/10.1016/j.neucom.2013.05.058
%
% This file is part of ORCA: https://github.com/ayrna/orca
% Original authors: Pedro Antonio Gutiérrez, María Pérez Ortiz, Javier Sánchez Monedero
% Citation: If you use this code, please cite the associated paper http://www.uco.es/grupos/ayrna/orreview
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
methods
function obj = MZE(obj)
obj.name = 'Rho Spearman';
end
end
methods(Static = true)
function spearman = calculateMetric(argum1,argum2)
%CALCULATEMETRIC Computes the evaluation metric
% METRIC = CALCULATEMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATEMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin < 2
[argum1, argum2] = getLabelsFromCM(argum1);
end
n = size(argum1,1);
num = sum((argum1-repmat(mean(argum1),n,1)).*(argum2-repmat(mean(argum2),n,1)));
div= sqrt(sum((argum1-repmat(mean(argum1),n,1)).^2)*sum((argum2-repmat(mean(argum2),n,1)).^2));
if(num == 0)
spearman = 0;
else
spearman = num/div;
end
end
function value = calculateCrossvalMetric(argum1,argum2)
%CALCULATECROSSVALMETRIC Computes the evaluation metric and returns
%it as an error.
% METRIC = CALCULATECROSSVALMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATECROSSVALMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
value = 1 - Spearman.calculateMetric(argum1,argum2);
else
value = 1 - Spearman.calculateMetric(argum1);
end
end
end
end