-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOASLTIP.py
1046 lines (819 loc) · 57.3 KB
/
OASLTIP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
import numpy as np
import math # for math.ceil
import matplotlib.pyplot as plt
from numpy.linalg import norm
from numpy.random import uniform
from scipy.stats import multivariate_normal
from filterpy.monte_carlo import systematic_resample, multinomial_resample , residual_resample, stratified_resample # various particle resampling methods
from scipy.optimize import minimize
from scipy.optimize import fmin_tnc
from matplotlib.patches import Ellipse, Rectangle, Circle # objects to draw on the simulation map to visualize POI, receivers, blocks etc.
import matplotlib.transforms as transforms
from matplotlib import animation
from matplotlib import collections
from numpy.random import seed
from multiprocessing import Process
from collections import deque as col_deque # for the sliding windows of RAF algorithm
import copy
import time
from sklearn.cluster import KMeans
from shapely.geometry import LineString
from shapely.geometry import Point
from shapely.geometry import Polygon
import shapely.affinity
import matplotlib.ticker as mticker
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
from matplotlib import rc
import sys
rc('text', usetex=True)
################################################# OASLTIP PARAMETERS #################################################
numberOfReceivers=3 # How many receivers exists in the indoor environment
sensitivityOfResult=0.2 # How many meters should be between each search points in our multilateration algorithm (to find the best position)
maxSignalError=5 # What is the maximum signal noise in terms of dBm in the indoor environment
numberOfBlocks=2 # How many block exists in the indoor environment
#blockWidth=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) / 8
#blockLength=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) / 12
blockWidth=0.5 # in meters (0.5 meters)
blockLength=6 # in meters (6 meters)
pastCoeff=0.2 # Between 0 and 1.
totalNumberOfPeople=1 # How many POI tracking should be simulated
MinWaitingForPerson=0 # min waiting time between each person entering the indoor environment (IE)
MaxWaitingForPerson=20 # max waiting time between each person entering the indoor environment (IE)
totalIterNo=16 # How many time steps should person of interests (POIs) spend inside the indoor environment
NumberOfParticles=300 # How many particles should be used in particle filtering
xdims=(0,14) # width (x dimension)
ydims=(0,11) # length (y dimension)
movingLimit=1.0 # How much meters in x and y axis can a person move at one time step
minUsefulSignal=-90 # min average RSSI value that is allowed to pass our prefiltering algorithm (filterAndCheckSignal)
minSignalValue=-100 # min RSSI value catchable. In simulation, if a distance value corresponds to a RSSI value lower than this number, then
# this signal cannot reach to a receiver.
strongSignalDistance=5 # used in simulation. One of the values used to determine the radius of the ellipse
#movingTendency=np.array([0.5,0.2])
movingTendency=np.array([0.0,0.0]) # if a person has a tendency to move in a direction at a time(1s), fill this variable as (x,y) coordinates
prevMotionRepeatProb=0.75 # Constant representing how much our past movement should be taken into account for predicting the current motion
numberOfRooms=0 # How much room are there in the indoor environment (IE)
#roomWidth=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) / 8 #Uncomment if room(s) should be created by the simulation
#roomLength=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) / 6 #Uncomment if room(s) should be created by the simulation
roomWidth=[5,4] # Comment out this line if room(s) should be created by the simulation
roomLength=[12,3] # Comment out this line if room(s) should be created by the simulation
# roomPositions = [ [6.75,7] ]
OOIWidth=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) /20 # beacon representing the person is drawn as circle in the map(ellipse indeed, but looks like a circle due to adjustments)
OOIHeight=OOIWidth
particleWidth=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) /400
particleHeight=particleWidth
# these blocking material positions will be added in main functions
# make receivers in square shape
receiverWidth=np.minimum( (xdims[1] - xdims[0]), (ydims[1]-ydims[0] ) ) /30
receiverLength=receiverWidth
receiverPositions=[] # to be filled in main function
blockPositions=[] # to be filled in main function
roomPositions=[] # to be filled in main function
blockMaterials=[] # to be filled in main function
roomMaterials=[] # to be filled in main function
WallRoomRatio=0.125 # Variable to determine the width of the walls inside a room. We assume walls inside a room covers almost 1/8 of the room and correct the RSSI accordingly.
roomWallWidth=roomWidth[0] * WallRoomRatio
materials=['concrete']
#materials = ['aluminum','iron', 'concrete', 'brick', 'glass'] # blockMaterials and roomMaterials elements are chosen from this list
materialColors = {'aluminum':'silver','iron':'black', 'concrete':'gray', 'brick':'red', 'glass':'aqua'} # https://matplotlib.org/users/colors.html
#material_SignalDisturbance_Coefficients={'aluminum':10.0, 'iron':9.0, 'concrete':8.0, 'brick':7.0, 'glass':3.0 } # signal attenuation per 1 meter in terms of dBm
material_SignalDisturbance_Coefficients={'aluminum':20.0, 'iron':18.0, 'concrete':16.0, 'brick':14.0, 'glass':6.0 } # signal attenuation per 1 meter in terms of dBm
TX_Power=0 # TX Power of the beacon that the POIs carry
rssiAtOne=TX_Power-65 # How much RSSI values is received when a receiver device is one meter away from the beacon
# Use predefined position only if you know the trajectory of the POI (Only usable in off-line usage of the OASLTIP algorithm)
predefinedPos=np.array([ [13,10.5], [12.5,9.7], [12,9.1], [11.5,8.5], [11.2,7.5],[11.2,6.6] ,[11,5.6], [10.5,4.8], [10.2,4.5], [9.5,4.1], [8.5,4.3], [7.7,4.5], [6.8,5.3],[6.3,6.1],[6.0,6.9],[5.3,7.3] ] )
# Set UseFingerPrintingInOASLTIP to True to use fingerprinting (FP) info in OASLTIP
# and set the FP variables below according to the setup used. Set UseFingerPrintingInOASLTIP to False if FP is
# not to be used in OASLTIP algorithm to make the code run faster
UseFingerPrintingInOASLTIP=False
if UseFingerPrintingInOASLTIP: # set FP related variables globally if UseFingerPrintingInOASLTIP is True
global fingerPrintingBeaconPositions, fingerPrintingSignalStrengthBeaconsToReceivers, InterpolatedMapForReceivers, RSSIinFP, FP_coeff
fingerPrintingBeaconPositions=np.array( [ [0.25,3], [5, 5.5 ], [11.5, 3.5 ], [12.5, 9 ] ] )
fingerPrintingSignalStrengthBeaconsToReceivers=np.array([ [ -76, -73, -86, -82 ], [ -84, -81, -67, -72 ], [ -83, -77, -85, -89 ] ]) # 4 Beacon to each of the 3 receivers
InterpolatedMapForReceivers=None
RSSIinFP={} # make it a dictionary where the key is 2d position
FP_coeff=0.2 # set it to zero if fingerprinting info SHALL NOT BE TAKEN INTO ACCOUNT in OASLTIP algorithm
################################################# OASLTIP PARAMETERS FINISHED #################################################
# NON-PARAMETER GLOBAL CONSTANT AND VARIABLES
safetyOffset = 10**-10 #It is used to avoid division by zero error
OverallError=0
numberOfNotFounds=0 # how many times none of the receivers in the indoor environment are able to catch a signal of a beacon carried by a POI.
smallestFigureSideInInch=6
def main():
global receiverPositions, blockPositions, roomPositions, blockMaterials, roomMaterials, roomWallWidth
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
receiverPositions=getReceiverPositionsToInstall(xdims,ydims,numberOfReceivers)
blockPositions=getBlockPositionsToInstall(xdims=xdims,ydims=ydims,numberOfBlocks=numberOfBlocks) # Comment out to generate block positions automatically for the simulation
roomPositions=getRoomPositionsToInstall(xdims=xdims,ydims=ydims,numberOfRooms=numberOfRooms,roomBoundary=roomWallWidth/2) # Comment out to generate room positions automatically for the simulation
#blockPositions=[[5,3],[9,8]] # Uncomment and fill this variable to manually enter the block position information
#roomPositions=[[7.5,9.5],[7,3.5]] # Uncomment and fill this variable to manually enter the room position information
blockMaterials=np.random.choice(materials, numberOfBlocks) # Comment out this line to let the simulation place the blocks inside the indoor environment
roomMaterials=np.random.choice(materials, numberOfRooms) # Comment out this line to let the simulation place the rooms inside the indoor environment
if UseFingerPrintingInOASLTIP:
interpolateFingerPrintingResult()
print("totalIterNo chosen as: ", totalIterNo)
# track each POI in a new process
AllProcesses=[]
for i in range(totalNumberOfPeople):
AllProcesses.append(Process(target=processFunction,args=(i,) ) )
for proc in AllProcesses:
proc.start()
sleepAmount=np.random.uniform(low=MinWaitingForPerson,high=MaxWaitingForPerson)
#print "sleepAmount is: " + str(sleepAmount)
time.sleep(sleepAmount)
def processFunction(i):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
seed(i)
macID=generateRandomMACID() # generate a different MACID for each beacon that the POIs carry to be able to distinguish them when tracking
if (xdims[1]-xdims[0] ) < ydims[1]-ydims[0]:
fig=plt.figure(figsize=( smallestFigureSideInInch, (ydims[1]-ydims[0])/(xdims[1]-xdims[0]) * smallestFigureSideInInch ) )
else:
fig=plt.figure(figsize=( (xdims[1]-xdims[0])/(ydims[1]-ydims[0]) * smallestFigureSideInInch, smallestFigureSideInInch ) )
fig.canvas.set_window_title(macID)
ax=fig.add_subplot(111)
while True:
initialPositionOfThePerson=np.random.uniform(low=[xmin,ymin], high=[xmax,ymax], size=(2))
#print "TMP initialPositionOfThePerson for " + str(macID) + " is: " + str(initialPositionOfThePerson)
isCollision=False
for blockPosition in blockPositions:
#if checkCircleCollision_WithRectangle(tmpBeaconPos,OOIWidth,OOIHeight,blockPosition,blockWidth,blockLength):
if checkEllipseRectangleIntersection(initialPositionOfThePerson,OOIWidth,OOIHeight,blockPosition,blockWidth,blockLength):
isCollision=True
break
if not isCollision:
for roomIndex, roomPosition in enumerate(roomPositions):
#if checkCircleCollision_WithRectangle(tmpBeaconPos,beaconRadius,roomPosition,roomWidth,roomLength):
#print "room wall width is: " + str(roomWallWidth)
# use roomWallWidth/2, since linewidth expands toward outside and inside (for roomWallWidth, expands roomWallWidth/2 towards inside and roomWallWidth/2 towards outside)
if checkEllipseRectangleIntersection(initialPositionOfThePerson,OOIWidth,OOIHeight,roomPosition,roomWidth,roomLength,boundaryForRect=roomWallWidth/2):
isCollision=True
break
if not isCollision:
break
initialPositionOfThePerson=predefinedPos[0]
currPerson = POI(xdims,ydims,NumberOfParticles,receiverPositions,initialPositionOfThePerson)
ani = animation.FuncAnimation(fig, animate, fargs=[ax, macID, currPerson, NumberOfParticles,xdims,ydims,maxSignalError,movingLimit,pastCoeff,
minUsefulSignal,minSignalValue,numberOfReceivers,sensitivityOfResult,
strongSignalDistance,movingTendency],interval=1000, frames=totalIterNo, repeat=False, init_func=animate_dummy_init)
plt.show()
def checkIfCoordinateIsInMap(coords,width,height):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
return coords[0]-width/2 >= xmin and coords[0]+width/2 <= xmax and coords[1]-height/2 >= ymin and coords[1]+height/2 <= ymax
# UNRELATED TO THE OASLTIP ALGORITHM, USED TO DRAW THE ROOM WALL IN THE SIMULATION MAP
# Borrowed from Felix's answer in https://stackoverflow.com/questions/19394505/matplotlib-expand-the-line-with-specified-width-in-data-unit/19397279
def linewidth_from_data_units(linewidth, axis):
"""
Convert a linewidth in data units to linewidth in points.
Parameters
----------
linewidth: float
Linewidth in data units of the respective reference-axis
axis: matplotlib axis
The axis which is used to extract the relevant transformation
data (data limits and size must not change afterwards)
reference: string
The axis that is taken as a reference for the data width.
Possible values: 'x' and 'y'. Defaults to 'y'.
Returns
-------
linewidth: float
Linewidth in points
"""
fig = axis.get_figure()
xlength = fig.bbox_inches.width * axis.get_position().width
xvalue_range = np.diff(axis.get_xlim())
ylength = fig.bbox_inches.height * axis.get_position().height
yvalue_range = np.diff(axis.get_ylim())
xlength *= 72
ylength *= 72
# Scale linewidth to value range
xresult=linewidth * (xlength / xvalue_range)
yresult=linewidth * (ylength / yvalue_range)
return max(xresult,yresult)
# Class for the person of interest (POI). POI is the person that we track.
class POI:
def __init__(self,xdims,ydims,NumberOfParticles,receiverPositions,initialPositionOfThePerson):
# INITIALIZATION STEP, distribute particles on the map
self.particles = create_uniform_particles(xdims,ydims , NumberOfParticles) # create particles of the particle filtering algo, all around the map
self.weights = np.ones(NumberOfParticles) / NumberOfParticles # give equal weights to all particles of particle filtering at the beginning
self.beacon_pos=initialPositionOfThePerson
self.prev_walkingNoise=None
self.x_prev = np.zeros((NumberOfParticles, 2)) # prev particles
self.x_pp = np.zeros((NumberOfParticles, 2)) # prev of prev particle
self.receiverPositions = receiverPositions
self.RSSIofReceivers=[] # RSSI value at the receiver where the signal is transmitted from the beacon that the POI carries.
self.distToReceivers=[] # Distance of each receiver to the beacon that the POI carries. ( Distance between the POI and each of the receivers)
self.prevCovMatrix=None # Used when drawing the confidence ellipse in the simulation.
self.mu=None # mean of the particles. This variable will give the final most-probable position of the POI.
self.max_weighted_particle=None # Max weighted particle of the particles used in particle filtering algorithm
self.slidingWindows=[col_deque([]) for i in range(len(receiverPositions) ) ] # to be filled in Running Average Filtering algorithm in function "calc_RSSIs_to_Receivers"
# ensure person does not go out of the map and do not hit any of the obstructions in the indoor environment in the simulation
# This function is used if we want to simulate a POI movement. Used in simulation only.
def move_beacon_in_map(self,xdims, ydims,movingLimit,movingTendency=np.array([0,0]),roomBoundary=0 ):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
xlow = np.maximum(xmin,self.beacon_pos[0]-movingLimit)-self.beacon_pos[0]
xhigh =np.minimum(xmax, self.beacon_pos[0]+movingLimit)-self.beacon_pos[0]
ylow = np.maximum(ymin,self.beacon_pos[1]-movingLimit)-self.beacon_pos[1]
yhigh =np.minimum(ymax, self.beacon_pos[1]+movingLimit)-self.beacon_pos[1]
while True:
walking_noise_x = np.random.uniform(low=xlow,high=xhigh) # human motion undeterminism
walking_noise_y = np.random.uniform(low=ylow,high=yhigh)
walkingNoise=np.array( (walking_noise_x,walking_noise_y)).T
if self.prev_walkingNoise is not None:
walkingChoices=[walkingNoise,self.prev_walkingNoise]
walkingNoise = np.copy(walkingChoices[ np.random.choice([0,1], p=(1-prevMotionRepeatProb,prevMotionRepeatProb)) ] ) # choose the prev motion with a higher probability
tmpBeaconPos=self.beacon_pos + walkingNoise + movingTendency
isCollision=not checkIfCoordinateIsInMap(tmpBeaconPos, OOIWidth,OOIHeight)
if not isCollision:
for blockPosition in blockPositions:
if checkEllipseRectangleIntersection(tmpBeaconPos,OOIWidth,OOIHeight,blockPosition,blockWidth,blockLength) or \
findRectangleLineSegmentIntersectionPoints(self.beacon_pos,tmpBeaconPos,blockPosition,blockWidth,blockLength) is not None :
isCollision=True
break
if not isCollision:
for roomIndex, roomPosition in enumerate(roomPositions):
#if checkCircleCollision_WithRectangle(tmpBeaconPos,beaconRadius,roomPosition,roomWidth,roomLength):
if checkEllipseRectangleIntersection(tmpBeaconPos,OOIWidth,OOIHeight,roomPosition,roomWidth,roomLength,boundaryForRect=roomBoundary) or \
indRectangleLineSegmentIntersectionPoints(self.beacon_pos,tmpBeaconPos,roomPosition,roomWidth,roomLength) is not None :
isCollision=True
break
if not isCollision:
break
self.prev_walkingNoise=np.copy(walkingNoise)
self.beacon_pos = np.copy(tmpBeaconPos)
# apply constant velocity model to move the POI around the map (consider the prev velocities when calculating the current motion)
# x_prev = x(t-1)
# x_pp = prev of x_prev
def predict_BLE( self, no_of_noise_elements, movingLimit, pastCoeff, xdims, ydims, movingTendency=np.array([0,0]) ):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
# ALL PARTICLES SHOULD RESIDE IN THE MAP, CHECK FOR BEING INSIDE FOR EACH PARTICLE (MOVE THAT AMOUNT AT THE BORDERS AT MAX)
# min of x, should not be lower than map's xmin && max of x should not be larger than map's xmax
xlow = np.maximum(xmin,self.particles[:,0]-movingLimit)-self.particles[:,0]
xhigh =np.minimum(xmax, self.particles[:,0]+movingLimit)-self.particles[:,0]
ylow = np.maximum(ymin,self.particles[:,1]-movingLimit)-self.particles[:,1]
yhigh =np.minimum(ymax, self.particles[:,1]+movingLimit)-self.particles[:,1]
walking_noise_x = np.random.uniform(low=xlow,high=xhigh,size=self.particles.shape[0]) # human motion undeterminism
walking_noise_y = np.random.uniform(low=ylow,high=yhigh,size=self.particles.shape[0])
walking_noise_x=np.array(walking_noise_x)
walking_noise_y=np.array(walking_noise_y)
walking_noise=np.array( (walking_noise_x,walking_noise_y)).T
if np.count_nonzero(self.x_prev) != 0 and np.count_nonzero(self.x_pp) != 0:
past_velocity = self.x_prev - self.x_pp # Past Position - Past of past position. It gives the velocity of the POI at the previous time step
change_in_pos = (1-pastCoeff) * walking_noise + pastCoeff * past_velocity # constant_velocity_motion
else:
change_in_pos = walking_noise
self.particles += change_in_pos + movingTendency
# Update the weight of the particles according to the measured beacon position found in the multilateration algorithm for the current time step
def update_weights(self):
distances = np.linalg.norm(self.particles - self.averaged_beacon_pos, axis=1)
self.weights *= np.sum(distances)/distances
# SET ALL WEIGHTS INTERSECTING WITH AN OBSTRUCTION TO ZERO (so that particles do not accumulate on obstructions)
for particleIndex, particle in enumerate(self.particles):
isCollision=False
for blockPosition in blockPositions:
#if checkCircleCollision_WithRectangle(tmpBeaconPos,OOIWidth,OOIHeight,blockPosition,blockWidth,blockLength):
if checkEllipseRectangleIntersection(particle,particleWidth,particleHeight,blockPosition,blockWidth,blockLength):
isCollision=True
break
if not isCollision:
for roomIndex,roomPosition in enumerate(roomPositions):
#if checkCircleCollision_WithRectangle(tmpBeaconPos,beaconRadius,roomPosition,roomWidth[roomIndex],roomLength[roomIndex]):
#print "room wall width is: " + str(roomWallWidth)
# use roomWallWidth/2, since linewidth expands toward outside and inside (for roomWallWidth, expands roomWallWidth/2 towards inside and roomWallWidth/2 towards outside)
if checkEllipseRectangleIntersection(particle,particleWidth,particleHeight,roomPosition,roomWidth[roomIndex],roomLength[roomIndex],boundaryForRect=roomWallWidth[roomIndex]/2):
isCollision=True
break
if isCollision:
self.weights[particleIndex]=0
self.weights += 10**(-300) # avoid round-off to zero
self.weights /= sum(self.weights) # normalize
# Resample N_eff
def resample_from_higher_weights(self,tmp_particles, tmp_weights):
#indices = multinomial_resample(weights)
#indices = residual_resample(weights)
#indices = stratified_resample(weights)
indices = systematic_resample(self.weights) # Use any of the resampling methods above.
tmp_particles[:] = tmp_particles[indices]
tmp_weights[:] = tmp_weights[indices]
tmp_weights.fill(1.0 / len(tmp_weights))
# PREFIILTER FUNCTION FOR THE INCOMING SIGNAL ( and if in simulation, simulate the weaking of the signal before even arriving at the receivers)
def calc_RSSIs_to_Receivers(self,minSignalValue,minUsefulSignal,maxSignalError):
receiverIndex=0
self.RSSIofReceivers[:] = [] # empty all RSSIs to accept the new ones for the current time step
for receiverPosition in self.receiverPositions:
RSSI = 0
if(maxSignalError > 0):
RSSI=weakenedSignal( distance_to_RSSI( np.linalg.norm(receiverPosition-self.beacon_pos) ) , maxSignalError )
else:
RSSI=distance_to_RSSI( np.linalg.norm(receiverPosition-self.beacon_pos ) )
isCollision=False
# Comment out "SIGNAL WEAKENING CODE BLOCK" BELOW TO USE OASLTIP FOR A REAL-WORLD APPLICATION SINCE IN REAL-WORLD, WEAKEANING NATURALLY HAPPENS
##################################################### "SIGNAL WEAKENING CODE BLOCK" STARTED ######################################################
########################## WEAKENING THE SIGNAL DUE TO THE SIGNAL HITTING AN OBSTRUCTION (BLOCK OR ROOM) ##########################
# this is used to weaken the signal in case there was a block or room between the receiver and the beacon
# this simulates the signal before we catch it in real life.
weakeningAmount=0 # distance between the receiver and the beacon / 1 meter * ( how many dBm to reduce for 1 meter)
for blockIndex, blockPosition in enumerate(blockPositions):
receiverBeaconBlockIntersection=findRectangleLineSegmentIntersectionPoints(receiverPosition,self.beacon_pos,blockPosition,blockWidth,blockLength)
if receiverBeaconBlockIntersection is not None:
isCollision=True
weakeningAmount+=np.linalg.norm(receiverBeaconBlockIntersection[0,:]-receiverBeaconBlockIntersection[1,:]) * material_SignalDisturbance_Coefficients[ blockMaterials[blockIndex] ] * np.random.uniform(0.5,1.5) # +- some noise
for roomIndex, roomPosition in enumerate(roomPositions):
receiverBeaconRoomIntersection=findRectangleLineSegmentIntersectionPoints(receiverPosition,self.beacon_pos,roomPosition,roomWidth,roomLength)
if receiverBeaconRoomIntersection is not None:
isCollision=True
weakeningAmount+=np.linalg.norm(receiverBeaconRoomIntersection[0,:]-receiverBeaconRoomIntersection[1,:]) * WallRoomRatio * material_SignalDisturbance_Coefficients[ roomMaterials[roomIndex] ] * np.random.uniform(0.5,1.5)
###################################################### "SIGNAL WEAKENING CODE BLOCK" FINISHED ######################################################
if isCollision:
#print "No Line Of Sight between receiver " + str(receiverPosition) + " and beacon " + str(self.beacon_pos)
RSSI-=weakeningAmount
else:
#print "Direct Line Of Sight between receiver " + str(receiverPosition) + " and beacon " + str(self.beacon_pos)
pass
########################################## RUNNING AVERAGE FILTERING (RAF) ALGORITHM STARTS ##########################################
# each receiver should have a sliding window
# max slidingWindows size should be 7
slidingWindow = self.slidingWindows[receiverIndex]
while len(slidingWindow) >=7:
slidingWindow.popleft() # delete oldest element
slidingWindow.append(RSSI) # appends at the right
if self.filterAndCheckSignal(minUsefulSignal,receiverIndex) and RSSI > minSignalValue:
#print "filtering was successful"
self.RSSIofReceivers.append( RSSI )
else:
#print "filtering was not successful"
self.RSSIofReceivers.append( None )
receiverIndex+=1
def filterAndCheckSignal(self,minUsefulSignal,receiverIndex):
mean=0.0
sum=0.0
slidingWindow = self.slidingWindows[receiverIndex]
if len(slidingWindow) < 3:
return False
else:
noOutlierDeque=col_deque(sorted(slidingWindow) )
noOutlierDeque.popleft() # delete smallest
noOutlierDeque.pop() # delete greatest
for signalVal in noOutlierDeque:
sum+=signalVal
mean=sum/len(noOutlierDeque)
return mean >= minUsefulSignal
# if RSSI is lower than minUsefulSignal , then omit this receiver ( assuming we use 0dBm signal powered beacons)
def setBeaconDistances_fromRSSIs(self,minUsefulSignal):
self.distToReceivers[:] = []
for RSSIofReceiver in self.RSSIofReceivers:
if RSSIofReceiver is not None and \
RSSIofReceiver > minUsefulSignal:
self.distToReceivers.append( RSSI_to_distance( RSSIofReceiver ) + safetyOffset ) # add safetyOffset0 to avoid divide by zero in the custom_minimize function
else:
self.distToReceivers.append( None )
def multiLateration(self,xdims,ydims,sensitivityOfResult):
receiverPositionsArray=np.array(self.receiverPositions)
resultingPoint = custom_minimize(self.RSSIofReceivers,np.vstack(receiverPositionsArray ),xdims,ydims,sensitivityOfResult,checkForBlocks=True )
return resultingPoint
def calc_PDF(self,strongSignalDistance,pastCoeff):
numberOfNotNones=0
numberOfStrongSignals=0
confidenceEllipseMultiplier=1
for distToReceiver in self.distToReceivers:
if distToReceiver is not None:
numberOfNotNones+=1
#print "dist to receiver is: " + str(distToReceiver)
if distToReceiver < strongSignalDistance:
numberOfStrongSignals+=1
# Calculate mean of the particles, the covariance matrix to determine the confidence ellipse size and max weighted particle.
self.mu = np.average(self.particles, weights=self.weights, axis=0)
self.covMatrix = np.cov(m=self.particles, rowvar=False, aweights=self.weights) # rowvar has to be False otherwise each row represents a variable, with observations in the columns.
# https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.cov.html
self.max_weighted_particle = self.particles[np.argmax(self.weights) ]
# PUNISH (ENLARGEN THE CONFIDENCE ELLIPSE) if we have little amount of RSSI data or if the BLE signals are not strong enough
if numberOfNotNones >=3:
if numberOfStrongSignals >= 3:
confidenceEllipseMultiplier=1 # No change
elif numberOfStrongSignals == 2:
confidenceEllipseMultiplier=1.25
elif numberOfStrongSignals == 1:
confidenceEllipseMultiplier=1.5
else: # numberOfStrongSignals == 0
confidenceEllipseMultiplier=2
# x1.6 worse than the >=3 case
elif numberOfNotNones == 2:
if numberOfStrongSignals == 2:
confidenceEllipseMultiplier=2
elif numberOfStrongSignals == 1:
confidenceEllipseMultiplier=2.4
else: # numberOfStrongSignals == 0
confidenceEllipseMultiplier=3.2
# x3 worse than the >=3 case
elif numberOfNotNones == 1:
if numberOfStrongSignals == 1:
confidenceEllipseMultiplier=4.5
else: # numberOfStrongSignals == 0
confidenceEllipseMultiplier=6.0
# x5 worse than the >=3 case
else: # numberOfNotNones == 0:
#confidenceEllipseMultiplier=float("inf") # do not draw the ellipse at all
confidenceEllipseMultiplier=10.0 # 10 is a high number, we may not see the ellipse in the indoor environment due to our low confidence about the POI position
self.covMatrix*=confidenceEllipseMultiplier
# if pastCoeff == 1, then except for the first time step, covMatrix will be the same as prev cov matrix
if self.prevCovMatrix is not None:
self.covMatrix=self.covMatrix*(1-pastCoeff) + pastCoeff*self.prevCovMatrix
# circle center, circle radius, 2 ends of line segment
def findEllipseLineSegmentIntersectionPoints(ellipseCenter,width,height, p1,p2):
if ( np.array_equal(p1,p2) ):
return None
centerPoint = Point(ellipseCenter)
unitCircle = centerPoint.buffer(1).boundary
ellipse=shapely.affinity.scale(unitCircle,width,height)
line = LineString([p1,p2])
if ellipse.intersects(line):
intersectionPointObject = ellipse.intersection(line)
intersectionPoint=np.array([intersectionPointObject.coords[0],intersectionPointObject.coords[1]])
else:
intersectionPoint=None
return intersectionPoint
def checkFirstRectangleContainsSecondRectangle(rectCenter,rectWidth,rectLength, rectCenter2,rectWidth2,rectLength2,boundaryForFirstRect=0,boundaryForSecondRect=0):
bottomLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForFirstRect),-(rectLength/2 + boundaryForFirstRect) ])
topLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForFirstRect) ,rectLength/2 + boundaryForFirstRect])
bottomRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForFirstRect,-(rectLength/2 + boundaryForFirstRect) ])
topRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForFirstRect,rectLength/2 + boundaryForFirstRect])
bottomLeftCorner2=rectCenter2+np.array([-(rectWidth2/2 + boundaryForSecondRect),-(rectLength2/2 + boundaryForSecondRect) ])
topLeftCorner2=rectCenter2+np.array([-(rectWidth2/2 + boundaryForSecondRect) ,rectLength2/2 + boundaryForSecondRect])
bottomRightCorner2=rectCenter2+np.array([rectWidth2/2 + boundaryForSecondRect,-(rectLength2/2 + boundaryForSecondRect) ])
topRightCorner2=rectCenter2+np.array([rectWidth2/2 + boundaryForSecondRect,rectLength2/2 + boundaryForSecondRect])
rectangle = Polygon([bottomLeftCorner, topLeftCorner, topRightCorner, bottomRightCorner])
rectangle2 = Polygon([bottomLeftCorner2, topLeftCorner2, topRightCorner2, bottomRightCorner2])
return rectangle.contains(rectangle2)
def checkRectangleRectangleIntersection(rectCenter,rectWidth,rectLength, rectCenter2,rectWidth2,rectLength2,boundaryForFirstRect=0,boundaryForSecondRect=0):
bottomLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForFirstRect),-(rectLength/2 + boundaryForFirstRect) ])
topLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForFirstRect) ,rectLength/2 + boundaryForFirstRect])
bottomRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForFirstRect,-(rectLength/2 + boundaryForFirstRect) ])
topRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForFirstRect,rectLength/2 + boundaryForFirstRect])
bottomLeftCorner2=rectCenter2+np.array([-(rectWidth2/2 + boundaryForSecondRect),-(rectLength2/2 + boundaryForSecondRect) ])
topLeftCorner2=rectCenter2+np.array([-(rectWidth2/2 + boundaryForSecondRect) ,rectLength2/2 + boundaryForSecondRect])
bottomRightCorner2=rectCenter2+np.array([rectWidth2/2 + boundaryForSecondRect,-(rectLength2/2 + boundaryForSecondRect) ])
topRightCorner2=rectCenter2+np.array([rectWidth2/2 + boundaryForSecondRect,rectLength2/2 + boundaryForSecondRect])
rectangle = Polygon([bottomLeftCorner, topLeftCorner, topRightCorner, bottomRightCorner])
rectangle2 = Polygon([bottomLeftCorner2, topLeftCorner2, topRightCorner2, bottomRightCorner2])
return rectangle.intersects(rectangle2)
# circle center, circle radius, 2 ends of line segment
def checkEllipseRectangleIntersection(ellipseCenter,width,height, rectCenter,rectWidth,rectLength,boundaryForRect=0):
# CORNERS
bottomLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect),-(rectLength/2 + boundaryForRect) ])
topLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect) ,rectLength/2 + boundaryForRect])
bottomRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,-(rectLength/2 + boundaryForRect) ])
topRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,rectLength/2 + boundaryForRect])
centerPoint = Point(ellipseCenter)
unitCircle = centerPoint.buffer(1).boundary
ellipse=shapely.affinity.scale(unitCircle,width,height)
rectangle = Polygon([bottomLeftCorner, topLeftCorner, topRightCorner, bottomRightCorner])
return ellipse.intersects(rectangle)
def checkPointInsideRectangle(point,rectCenter,rectWidth,rectLength,boundaryForRect=0):
bottomLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect),-(rectLength/2 + boundaryForRect) ])
topLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect) ,rectLength/2 + boundaryForRect])
bottomRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,-(rectLength/2 + boundaryForRect) ])
topRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,rectLength/2 + boundaryForRect])
point = Point(point)
rectangle = Polygon([bottomLeftCorner, topLeftCorner, topRightCorner, bottomRightCorner])
return point.intersects(rectangle)
def findRectangleLineSegmentIntersectionPoints(p1,p2,rectCenter,rectWidth,rectLength,boundaryForRect=0):
if np.array_equal(p1,p2):
return None
# CORNERS
bottomLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect),-(rectLength/2 + boundaryForRect) ])
topLeftCorner=rectCenter+np.array([-(rectWidth/2 + boundaryForRect) ,rectLength/2 + boundaryForRect])
bottomRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,-(rectLength/2 + boundaryForRect) ])
topRightCorner=rectCenter+np.array([rectWidth/2 + boundaryForRect,rectLength/2 + boundaryForRect])
line = LineString([p1,p2])
rectangle = Polygon([bottomLeftCorner, topLeftCorner, topRightCorner, bottomRightCorner])
if rectangle.intersects(line):
intersectionPointObject = rectangle.intersection(line)
if np.array_equal(np.array(intersectionPointObject.coords).shape,np.array([2, 2])):
intersectionPoint=np.array([intersectionPointObject.coords[0],intersectionPointObject.coords[1]])
else:
intersectionPoint=None
else:
intersectionPoint=None
return intersectionPoint
def generateRandomMACID():
return ':'.join('%02x'%np.random.randint(0,256) for _ in range(6))
def custom_minimize(RSSIofReceivers, receiverPositions,xdims,ydims,sensitivityOfResult=1.0,checkForBlocks=True):
mysum=float("inf")
maxCatchableSignalDistance = RSSI_to_distance( minUsefulSignal ) + safetyOffset
resultingPoint=[-1,-1] # some impossible coordinate value to initialize
for x in np.arange(xdims[0],xdims[1],sensitivityOfResult):
for y in np.arange(ydims[0],ydims[1],sensitivityOfResult):
# if x,y collides with a block or room, this position would not be possible
isPointOnObstacle=False
for blockPosition in blockPositions: # it will not enter this loop if there are no blocks
if checkPointInsideRectangle([x,y],blockPosition,blockWidth,blockLength):
isPointOnObstacle=True
break
if not isPointOnObstacle:
for roomIndex,roomPosition in enumerate(roomPositions):
if checkPointInsideRectangle([x,y],roomPosition,roomWidth[roomIndex],roomLength[roomIndex]):
isPointOnObstacle=True
break
if isPointOnObstacle:
continue # if a point is on an obstacle, then this point cannot be what we are looking for (since the POI cannot be on an obstacle)
tmp_sum=0
for i in range(len(receiverPositions)):
strengtheningAmount=0
for blockIndex, blockPosition in enumerate(blockPositions):
receiverMeanBlockIntersection = findRectangleLineSegmentIntersectionPoints(receiverPositions[i],np.array([x,y]),blockPosition,blockWidth,blockLength)
if receiverMeanBlockIntersection is not None:
strengtheningAmount+=np.linalg.norm(receiverMeanBlockIntersection[0,:]-receiverMeanBlockIntersection[1,:]) * material_SignalDisturbance_Coefficients[ blockMaterials[blockIndex] ]
for roomIndex, roomPosition in enumerate(roomPositions):
receiverMeanRoomIntersection = findRectangleLineSegmentIntersectionPoints(receiverPositions[i],np.array([x,y]),roomPosition,roomWidth[roomIndex],roomLength[roomIndex])
if receiverMeanRoomIntersection is not None:
strengtheningAmount+=np.linalg.norm(receiverMeanRoomIntersection[0,:]-receiverMeanRoomIntersection[1,:]) * WallRoomRatio * material_SignalDisturbance_Coefficients[ roomMaterials[roomIndex] ]
if UseFingerPrintingInOASLTIP:
xyDistToRecInFP = RSSI_to_distance(RSSIinFP[i,x,y] + strengtheningAmount )
xyDistToRec = np.linalg.norm( [x,y] - receiverPositions[i] )
# Rule 1) PUNISH THE x,y points whose distances are not compatible with the RSSI values we receive.
# Rule 2) Punish more when distToReceiverGivenRSSI is low since low distToReceiverGivenRSSI means high RSSI and high RSSIs are reliable.
# and if x,y deviates from what low RSSIs tell us, then we should punish this x,y point.
if RSSIofReceivers[i] is not None:
distToReceiverGivenRSSI=RSSI_to_distance( RSSIofReceivers[i] + strengtheningAmount) + safetyOffset
tmp_sum+=( abs( xyDistToRec - distToReceiverGivenRSSI ) / distToReceiverGivenRSSI ) ** 2
if UseFingerPrintingInOASLTIP:
if abs( RSSIofReceivers[i] - RSSIinFP[i,x,y] ) > maxSignalError: # if the difference is more than 5dBm for example:
tmp_sum+=FP_coeff*( abs( xyDistToRecInFP - distToReceiverGivenRSSI ) / distToReceiverGivenRSSI ) ** 2
# Rule 1) PUNISH THE x,y points which are close to the receivers since x,y should not be close if our receivers cannot catch a signal
else: # If a receiver device (RSSIofReceivers[i]) is not able to catch a signal for the current time step
maxCatchableSignalDistance = RSSI_to_distance( minUsefulSignal + strengtheningAmount) + safetyOffset
if xyDistToRec < maxCatchableSignalDistance: # we see it as None, so it should not be closer than maxCatchableSignalDistance. If so, then punish
tmp_sum+=( abs( xyDistToRec - maxCatchableSignalDistance ) / xyDistToRec ) ** 2
if UseFingerPrintingInOASLTIP:
if xyDistToRecInFP - maxCatchableSignalDistance:
tmp_sum+=FP_coeff*( abs( xyDistToRecInFP - maxCatchableSignalDistance ) / xyDistToRecInFP ) ** 2
if tmp_sum < mysum:
mysum = tmp_sum
resultingPoint=[x,y]
return resultingPoint
# after signal transmitted, maybe the signal hit a wall and reduced in strength/
# since we cannot manipulate after transmittion is node, we reduce the signal when transmitting assuming it will hit something by a posibility
# We have to increase it by a possibility
def weakenedSignal(RSSI,maxSignalError):
return RSSI - uniform(0,maxSignalError)
def create_uniform_particles(x_range, y_range, NumberOfParticles):
particles = np.empty((NumberOfParticles, 2))
particles[:, 0] = uniform(x_range[0], x_range[1], size=NumberOfParticles)
particles[:, 1] = uniform(y_range[0], y_range[1], size=NumberOfParticles)
return particles
# for each receiver hold a separate strength map
# each beacon should have its interpolation all around the map. Then we we should take weighted average of these beacons signal strength values
# For example, FOR RECEIVER 1, if beacon1 is at [5,5] and beacon2 is at [10,3] and the point that we want to interpolate is at [10,5]. Beacon2 should have higher vote to determine signal strength
# signal strength values of the beacons (fingerprinting positions) are different for each receiver, therefore for each receiver we should hold another map info
def interpolateFingerPrintingResult():
xElems=np.arange(xdims[0],xdims[1],sensitivityOfResult)
yElems=np.arange(ydims[0],ydims[1],sensitivityOfResult )
allPosDistancesToReceivers={} # make it a dictionary where the key is 2d position
for i in range(numberOfReceivers):
for x in xElems:
for y in yElems:
allPosDistancesToReceivers[i,x,y]=np.linalg.norm(receiverPositions[i]- np.array([x,y]) )
numberOfBeacons=fingerPrintingSignalStrengthBeaconsToReceivers.shape[1]
allPosDistancesToBeacons={} # make it a dictionary where the key is 2d position
for k in range(numberOfBeacons):
for x in xElems:
for y in yElems:
allPosDistancesToBeacons[k,x,y]=np.linalg.norm(fingerPrintingBeaconPositions[k]- np.array([x,y]) )
# INITIALIZE INTERPOLATION MAP FOR EACH RECEIVER
global RSSIinFP
for i in range(numberOfReceivers):
for x in xElems:
for y in yElems:
minDist=np.float('inf')
min_k=0
# find the closest beacon to [x,y]
# whichever beacon or receiver is the closest to [x,y], it should determine the interpolation result
for k in range(numberOfBeacons):
if allPosDistancesToBeacons[k,x,y] < minDist:
min_k=k
minDist = allPosDistancesToBeacons[k,x,y]
base_dist=np.linalg.norm(fingerPrintingBeaconPositions[min_k]-receiverPositions[i])
target_dist=allPosDistancesToReceivers[i,x,y]
base_RSSI=fingerPrintingSignalStrengthBeaconsToReceivers[i][min_k]
RSSIinFP[i,x,y]=calc_relative_RSSI(base_dist,target_dist,base_RSSI)
def calc_relative_RSSI(base_dist, target_dist, base_RSSI):
#print "calc_relative_RSSI: " + str( np.log ( (target_dist+safetyOffset) / (base_dist+safetyOffset) ) )
if target_dist >= 1:
return base_RSSI + -20 * np.log ( (target_dist) / (base_dist+safetyOffset) )
else:
return zero_one_meter_distance_to_RSSI(target_dist)
#distance in meters, returns RSSI in dBm
# assuming signal propogation constant is 2, https://www.rn.inf.tu-dresden.de/dargie/papers/icwcuca.pdf in equation (4)
def distance_to_RSSI(distance):
res_RSSI = 0
if distance >=1:
res_RSSI = -20 * np.log10(distance) + rssiAtOne
else:
res_RSSI = zero_one_meter_distance_to_RSSI(distance)
return float(res_RSSI)
#RSSI in dBm, returns distance in meter
def RSSI_to_distance(RSSI):
res_distance = 0
if RSSI <= rssiAtOne:
res_distance = 10**( (RSSI-rssiAtOne) / -20 )
else:
res_distance = zero_one_meter_RSSI_to_distance(RSSI)
return float(res_distance)
# EXPONENTIAL FUNCITON BETWEEN 0 and 1
def zero_one_meter_RSSI_to_distance(RSSI):
return 10**( ( ( RSSI - TX_Power ) * np.log10(2) ) / (rssiAtOne - TX_Power) ) -1
# should return something between TX power and rssiAtOne
def zero_one_meter_distance_to_RSSI (dist):
return float( TX_Power + (rssiAtOne - TX_Power) * ( (np.log10(dist+1)) / (np.log10(2) ) ) )
# N_eff : Effective weight number
def neff(weights):
return 1.0 / np.sum(np.square(weights))
def getReceiverPositionsToInstall(xdims,ydims,numberOfReceivers):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
step_size=(1/( np.ceil(np.sqrt(numberOfReceivers*1000) ) ) )
initial_points = np.mgrid[0:1+step_size:step_size, 0:1+step_size:step_size].reshape(2,-1).T
receiverPositions = KMeans(n_clusters=numberOfReceivers, random_state=0,n_init=100).fit(initial_points).cluster_centers_
if receiverPositions is not None:
receiverPositions[:,0]=xmin+receiverPositions[:,0]*(xmax-xmin)
receiverPositions[:,1]=ymin+receiverPositions[:,1]*(ymax-ymin)
return receiverPositions
# create blocks on the map automatically for the simulation and make sure these do not intersect with any other obstructions
def getBlockPositionsToInstall(xdims,ydims,numberOfBlocks):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
numberOfBlocksCreated=0
blockPositionsToInstall=[]
while numberOfBlocksCreated!=numberOfBlocks:
blockCoord=np.random.uniform(low=[xmin,ymin], high=[xmax,ymax])
collisionExists=False
for receiverPosition in receiverPositions:
if checkRectangleRectangleIntersection(blockCoord,blockWidth,blockLength,receiverPosition,receiverWidth,receiverLength):
collisionExists=True
break
intersectionWithOtherBlocksExists=False
if not collisionExists: # if collision exists, do not make other checks
for blockPosition in blockPositionsToInstall:
if checkRectangleRectangleIntersection(blockCoord,blockWidth,blockLength,blockPosition,blockWidth,blockLength):
intersectionWithOtherBlocksExists=True
break
if not collisionExists and not intersectionWithOtherBlocksExists:
blockPositionsToInstall.append(blockCoord)
numberOfBlocksCreated+=1
return np.array(blockPositionsToInstall)
def getRoomPositionsToInstall(xdims,ydims,numberOfRooms,roomBoundary):
xmin,xmax,ymin,ymax= xdims[0],xdims[1],ydims[0],ydims[1]
numberOfRoomsCreated=0
roomPositionsToInstall=[]
while numberOfRoomsCreated!=numberOfRooms:
roomCoord=np.random.uniform(low=[xmin,ymin], high=[xmax,ymax])
receiverHollowRoomCollisionExists=False
for receiverPosition in receiverPositions:
if not checkFirstRectangleContainsSecondRectangle(roomCoord,roomWidth,roomLength,receiverPosition,receiverWidth,receiverLength,boundaryForFirstRect=-roomBoundary) and \
checkRectangleRectangleIntersection(roomCoord,roomWidth,roomLength,receiverPosition,receiverWidth,receiverLength,boundaryForFirstRect=roomBoundary):
receiverHollowRoomCollisionExists=True
break
intersectionWithBlocksExists=False
if not receiverHollowRoomCollisionExists:
for blockPosition in blockPositions:
if checkRectangleRectangleIntersection(roomCoord,roomWidth,roomLength,blockPosition,blockWidth,blockLength,boundaryForFirstRect=roomBoundary):
intersectionWithBlocksExists=True
break
intersectionWithOtherRoomsExists=False
if not receiverHollowRoomCollisionExists and not intersectionWithBlocksExists:
for roomPosition in roomPositionsToInstall:
if checkRectangleRectangleIntersection(roomCoord,roomWidth,roomLength,roomPosition,roomWidth,roomLength,boundaryForFirstRect=roomBoundary,boundaryForSecondRect=roomBoundary):
intersectionWithOtherRoomsExists=True
break
if not receiverHollowRoomCollisionExists and not intersectionWithBlocksExists and not intersectionWithOtherRoomsExists:
roomPositionsToInstall.append(roomCoord)
numberOfRoomsCreated+=1
#print numberOfRoomsCreated
return np.array(roomPositionsToInstall)
# main function
# strongSignalDistance -> to how many meters we accept this signal as strong. We use it for confidence ellipse calculations
# sensitivityOfResult -> how much sensitive we are about the final position of our object of interest
# maxSignalError -> signals are erronoues in real life, to simulate add noise upto this number
# minUsefulSignal -> min signal value we use for distance calculation
# minSignalValue -> min signal that we can still find, if a signal is lower than that(if receiver is far away), then this receiver(s) cannot catch this signal.
# movingLimit -> how many meters at a time our object moves at max
# movingTendency -> in what direction and meters our object tends to move
def animate_dummy_init():
pass
def animate(iterNo, ax, macID, currPerson, NumberOfParticles, xdims=(0, 50), ydims=(0, 50), maxSignalError=20, movingLimit=2, pastCoeff=0, minUsefulSignal=-90,
minSignalValue=-100,numberOfReceivers=4, sensitivityOfResult=1.0, strongSignalDistance=5 , movingTendency=np.array([0,0]) ):
ax.clear()
ax.set_xlim(*xdims)
ax.set_ylim(*ydims)
ax.set_aspect('equal',adjustable='box')
minSideLenghtOfTheMap=np.maximum(xdims[1]-xdims[0],ydims[1]-ydims[0])
tickStepSize=np.ceil(minSideLenghtOfTheMap/40)
xstart,xend = ax.get_xlim()
ystart,yend = ax.get_ylim()
ax.xaxis.set_ticks(np.arange(xstart, xend+tickStepSize, tickStepSize ))
ax.yaxis.set_ticks(np.arange(ystart, yend+tickStepSize, tickStepSize ))
ax.tick_params(axis="x", labelsize=20)
ax.tick_params(axis="y", labelsize=20)
roomLineWidth=linewidth_from_data_units(roomWallWidth,ax)
currPerson.move_beacon_in_map(xdims,ydims,movingLimit,movingTendency,roomBoundary=roomWallWidth/2) # Comment out to if POI position should be entered manually
#currPerson.beacon_pos = predefinedPos[iterNo] # Uncomment and fill this variable to determine the POI position for the current time step
currPerson.calc_RSSIs_to_Receivers(minSignalValue,minUsefulSignal,maxSignalError )
currPerson.setBeaconDistances_fromRSSIs(minUsefulSignal)
global numberOfNotFounds
print("Iter no is: " + str(iterNo) )
isProcessed=False
if all(dist is None for dist in currPerson.distToReceivers):
numberOfNotFounds+=1
pass
else:
currPerson.averaged_beacon_pos = currPerson.multiLateration(xdims,ydims,sensitivityOfResult)
# 1st STEP
currPerson.predict_BLE(no_of_noise_elements = NumberOfParticles, movingLimit=movingLimit, pastCoeff = pastCoeff, xdims=xdims, ydims=ydims,movingTendency=movingTendency )
# 2nd STEP
currPerson.update_weights()
# resample if too few effective particles
if neff(currPerson.weights) < NumberOfParticles/2.0:
tmp_particles=np.zeros((NumberOfParticles, 2))
tmp_weights = np.zeros(NumberOfParticles)
tmp_particles[:]=currPerson.particles[:]
tmp_weights[:]=currPerson.weights[:]
currPerson.resample_from_higher_weights(tmp_particles, tmp_weights)
if np.allclose(tmp_weights, 1.0/NumberOfParticles):
currPerson.weights[:]=tmp_weights[:]
currPerson.particles[:]=tmp_particles[:]
else:
#print "no resampling is made for iteration " + iterNo
pass
currPerson.calc_PDF(strongSignalDistance,pastCoeff)
currPerson.prev_covMatrix=currPerson.covMatrix
currPerson.x_pp[:] = currPerson.x_prev[:] # or np.copyto(x_pp,x_prev)
currPerson.x_prev[:] = currPerson.particles[:] # or np.copyto(x_prev,particles)
global OverallError
CurrAccuracy = np.linalg.norm(currPerson.mu-currPerson.beacon_pos)
OverallError += CurrAccuracy
#if iterNo == totalIterNo-1:
#print "average Error is: " + str(OverallError/(totalIterNo-numberOfNotFounds) )
#print "numberOfNotFounds is: " + str(numberOfNotFounds)
particles_x,particles_y=np.hsplit(currPerson.particles,2)
if not np.isnan(currPerson.covMatrix).any() or \
not np.isinf(currPerson.covMatrix).any():
# Ellipse drawing code logic below is borrowed from Jaime's answer in https://stackoverflow.com/questions/20126061/creating-a-confidence-ellipses-in-a-sccatterplot-using-matplotlib/20127387
#The following code draws a one, two, and three standard deviation sized ellipses:
eigVals, eigVecs = np.linalg.eig(currPerson.covMatrix)
eigVals = np.sqrt(eigVals)
# larger eigenvalue should be the width and
# the angle is the ccw angle between the eigenvector of the corresponding eigenvalue and the positive x axis
color1,color2,color3=0.0,0.0,0.0 # color components for the hollow error ellipses
for j in range(1, 4):
ell = Ellipse(xy=(np.mean(particles_x),np.mean(particles_y)),
width=eigVals[np.argmax(abs(eigVals))]*j*2, height=eigVals[1-np.argmax(abs(eigVals))]*j*2,
angle=np.rad2deg(np.arctan2(*eigVecs[:,np.argmax(abs(eigVals))][::-1])))
color1+=0.3
color2+=0.2
color3+=0.25
#ell.set_facecolor((color1, color2, color3))
ell.set_edgecolor((color1, color2, color3))
ell.set_fill(False)
ell.set_linewidth(5.0)
ax.add_artist(ell)
else:
pass # do not draw any ellipses
# draw particles
ellipses = [Ellipse(xy=(xi,yi), width=particleWidth, height=particleHeight, linewidth=0, facecolor='black') for xi,yi in zip(currPerson.particles[:, 0],currPerson.particles[:, 1])]
c = collections.PatchCollection(ellipses)
ax.add_collection(c)
muPlot = Ellipse(xy=(currPerson.mu[0],currPerson.mu[1]), width=OOIWidth, height=OOIHeight, linewidth=0, facecolor='purple')
maxWeightedPlot = Ellipse(xy=(currPerson.max_weighted_particle[0],currPerson.max_weighted_particle[1]), width=OOIWidth, height=OOIHeight, linewidth=0, facecolor='orange')
ax.add_artist(muPlot)
ax.add_artist(maxWeightedPlot)