|
4 | 4 | contain the root `toctree` directive.
|
5 | 5 |
|
6 | 6 | Welcome to intake-erddap's documentation!
|
7 |
| -======================================= |
| 7 | +========================================= |
| 8 | + |
| 9 | +.. toctree:: |
| 10 | + :maxdepth: 2 |
| 11 | + |
| 12 | + API <api> |
| 13 | + GitHub repository <https://github.com/axiom-data-science/intake-axds> |
| 14 | + |
| 15 | +Intake ERDDAP |
| 16 | +============= |
| 17 | + |
| 18 | +Intake is a lightweight set of tools for loading and sharing data in data |
| 19 | +science projects. Intake ERDDAP provides a set of integrations for ERDDAP. |
| 20 | + |
| 21 | +- Quickly identify all datasets from an ERDDAP service in a geographic region, |
| 22 | + or containing certain variables. |
| 23 | +- Produce a pandas DataFrame for a given dataset or query. |
| 24 | +- Get an xarray Dataset for the Gridded datasets. |
| 25 | + |
| 26 | + |
| 27 | +.. image:: https://img.shields.io/github/workflow/status/axiom-data-science/intake-erddap/Tests?logo=github&style=for-the-badge |
| 28 | + :alt: Build Status |
| 29 | + |
| 30 | +.. image:: https://img.shields.io/codecov/c/github/axiom-data-science/intake-erddap.svg?style=for-the-badge |
| 31 | + :alt: Code Coverage |
| 32 | + |
| 33 | +.. image:: https://img.shields.io/badge/License-BSD--2%20Clause-blue.svg?style=for-the-badge |
| 34 | + :alt: License:BSD |
| 35 | + |
| 36 | +.. image:: https://img.shields.io/github/workflow/status/axiom-data-science/intake-erddap/linting%20with%20pre-commit?label=Code%20Style&style=for-the-badge |
| 37 | + :alt: Code Style Status |
| 38 | + |
| 39 | +The project is available on `Github <https://github.com/axiom-data-science/intake-erddap/>`_. |
| 40 | + |
| 41 | + |
| 42 | +TODO: Summary |
| 43 | + |
| 44 | +The Key features are: |
| 45 | + |
| 46 | + - Pandas DataFrames for any TableDAP dataset. |
| 47 | + - xarray Datasets for any GridDAP datasets. |
| 48 | + - Query by any or all: |
| 49 | + - bounding box |
| 50 | + - time |
| 51 | + - CF ``standard_name`` |
| 52 | + - variable name |
| 53 | + - Plaintext Search term |
| 54 | + - Save catalogs locally for future use. |
| 55 | + |
| 56 | + |
| 57 | +Requirements |
| 58 | +------------ |
| 59 | + |
| 60 | +- Python >= 3.8 |
8 | 61 |
|
9 | 62 | Installation
|
10 | 63 | ------------
|
11 | 64 |
|
12 |
| -To install from PyPI: |
13 |
| - >>> pip install intake-erddap |
| 65 | +In the very near future, we will be offering the project on conda and PyPI. In |
| 66 | +the meantime the project can be installed from github using pip:: |
14 | 67 |
|
15 |
| -.. toctree:: |
16 |
| - :maxdepth: 2 |
| 68 | + pip install -e 'git+https://github.com/axiom-data-science/intake-erddap/@master#egg=intake-erddap' |
17 | 69 |
|
18 |
| - overview |
19 |
| - api |
20 |
| - GitHub repository <https://github.com/axiom-data-science/intake-axds> |
21 | 70 |
|
| 71 | +Examples |
| 72 | +-------- |
| 73 | + |
| 74 | +To create an intake catalog for all of the ERDDAP's TableDAP offerings use:: |
| 75 | + |
| 76 | + import intake |
| 77 | + catalog = intake.open_erddap_cat( |
| 78 | + server="https://erddap.sensors.ioos.us/erddap" |
| 79 | + ) |
| 80 | + |
| 81 | + |
| 82 | +The catalog objects behave like a dictionary with the keys representing the |
| 83 | +dataset's unique identifier within ERDDAP, and the values being the |
| 84 | +``TableDAPSource`` objects. To access a source object:: |
| 85 | + |
| 86 | + source = catalog["datasetid"] |
| 87 | + |
| 88 | +From the source object, a pandas DataFrame can be retrieved:: |
| 89 | + |
| 90 | + df = source.read() |
| 91 | + |
| 92 | +Scenarios |
| 93 | +--------- |
| 94 | + |
| 95 | +Consider a case where you need to find all wind data near Florida.:: |
| 96 | + |
| 97 | + import intake |
| 98 | + from datetime import datetime |
| 99 | + bbox = (-87.84, 24.05, -77.11, 31.27) |
| 100 | + catalog = intake.open_erddap_cat( |
| 101 | + server="https://erddap.sensors.ioos.us/erddap", |
| 102 | + bbox=bbox, |
| 103 | + start_time=datetime(2022, 1, 1), |
| 104 | + end_time=datetime(2023, 1, 1), |
| 105 | + standard_names=["wind_speed", "wind_from_direction"], |
| 106 | + ) |
| 107 | + |
| 108 | + df = next(catalog.values()).read() |
| 109 | + |
| 110 | + |
| 111 | +.. raw:: html |
| 112 | + |
| 113 | + <table class="docutils align-default"> |
| 114 | + <thead> |
| 115 | + <tr style="text-align: right;"> |
| 116 | + <th></th> |
| 117 | + <th>time (UTC)</th> |
| 118 | + <th>wind_speed (m.s-1)</th> |
| 119 | + <th>wind_from_direction (degrees)</th> |
| 120 | + </tr> |
| 121 | + </thead> |
| 122 | + <tbody> |
| 123 | + <tr> |
| 124 | + <th>0</th> |
| 125 | + <td>2022-12-14T19:40:00Z</td> |
| 126 | + <td>7.0</td> |
| 127 | + <td>140.0</td> |
| 128 | + </tr> |
| 129 | + <tr> |
| 130 | + <th>1</th> |
| 131 | + <td>2022-12-14T19:20:00Z</td> |
| 132 | + <td>7.0</td> |
| 133 | + <td>120.0</td> |
| 134 | + </tr> |
| 135 | + <tr> |
| 136 | + <th>2</th> |
| 137 | + <td>2022-12-14T19:10:00Z</td> |
| 138 | + <td>NaN</td> |
| 139 | + <td>NaN</td> |
| 140 | + </tr> |
| 141 | + <tr> |
| 142 | + <th>3</th> |
| 143 | + <td>2022-12-14T19:00:00Z</td> |
| 144 | + <td>9.0</td> |
| 145 | + <td>130.0</td> |
| 146 | + </tr> |
| 147 | + <tr> |
| 148 | + <th>4</th> |
| 149 | + <td>2022-12-14T18:50:00Z</td> |
| 150 | + <td>9.0</td> |
| 151 | + <td>130.0</td> |
| 152 | + </tr> |
| 153 | + <tr> |
| 154 | + <th>...</th> |
| 155 | + <td>...</td> |
| 156 | + <td>...</td> |
| 157 | + <td>...</td> |
| 158 | + </tr> |
| 159 | + <tr> |
| 160 | + <th>48296</th> |
| 161 | + <td>2022-01-01T00:40:00Z</td> |
| 162 | + <td>4.0</td> |
| 163 | + <td>120.0</td> |
| 164 | + </tr> |
| 165 | + <tr> |
| 166 | + <th>48297</th> |
| 167 | + <td>2022-01-01T00:30:00Z</td> |
| 168 | + <td>3.0</td> |
| 169 | + <td>130.0</td> |
| 170 | + </tr> |
| 171 | + <tr> |
| 172 | + <th>48298</th> |
| 173 | + <td>2022-01-01T00:20:00Z</td> |
| 174 | + <td>4.0</td> |
| 175 | + <td>120.0</td> |
| 176 | + </tr> |
| 177 | + <tr> |
| 178 | + <th>48299</th> |
| 179 | + <td>2022-01-01T00:10:00Z</td> |
| 180 | + <td>4.0</td> |
| 181 | + <td>130.0</td> |
| 182 | + </tr> |
| 183 | + <tr> |
| 184 | + <th>48300</th> |
| 185 | + <td>2022-01-01T00:00:00Z</td> |
| 186 | + <td>4.0</td> |
| 187 | + <td>130.0</td> |
| 188 | + </tr> |
| 189 | + </tbody> |
| 190 | + </table> |
22 | 191 |
|
23 | 192 |
|
24 | 193 | Indices and tables
|
|
0 commit comments