Skip to content

Make DEFAULT_HF_HUB_MODEL_EXPORT_DIRECTORY configurable #115

Open
@pcolazurdo

Description

@pcolazurdo

In DEFAULT_HF_HUB_MODEL_EXPORT_DIRECTORY = os.path.join(os.getcwd(), ".sagemaker/mms/models") the directory is forced to be in the same path as the current directory of the running process. In some SageMaker instances this is a relatively small partition that can't be extended. Allowing this var to be modified by an environment variable will allow the download of larger models in a variety of instances (i.e. ml.g5.16xlarge)

To reproduce the problem you can try this particular model (other large models will fail the same):

hub = {
	'HF_MODEL_ID':'Salesforce/instructblip-flan-t5-xxl',
	'HF_TASK':'image-to-text',
    'SM_NUM_GPUS': '1',
    'HF_HOME':'/tmp/hf_home',
    'HF_ASSETS_CACHE': '/tmp/hf_assets_cache',
    'HF_DATASETS_CACHE':'/tmp/hf_cache',
    'HF_DATASETS_HOME':'/tmp/hf_home',
    'HF_HUB_CACHE': '/tmp/hf_hub_cache'
}

# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
	transformers_version='4.37.0',
	pytorch_version='2.1.0',
	py_version='py310',
	env=hub,
	role=role,
)

# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
	initial_instance_count=1, # number of instances
	instance_type='ml.g5.16xlarge', # ec2 instance type
    # volume_size=256
)

The error in CloudWatch is similar to:

OSError: [Errno 28] No space left on device: '/tmp/hf_hub_cache/tmpd1hcphh0' -> '/.sagemaker/mms/models/Salesforce__instructblip-flan-t5-xxl/pytorch_model-00001-of-00005.bin'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions