forked from michaelbrownid/tfccs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_pred_kmer.py
56 lines (44 loc) · 2.35 KB
/
model_pred_kmer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
import tensorflow.keras as KK
import sys
import numpy as np
from . import struct
# return function with from_logits=True
def crossEntropySparseLoss(Truth, Pred):
print("KK.backend.int_shape(Truth)",KK.backend.int_shape(Truth))
print("KK.backend.int_shape(Pred)",KK.backend.int_shape(Pred))
return(tf.keras.losses.sparse_categorical_crossentropy(Truth, Pred, from_logits=True))
#return(tf.nn.sparse_softmax_cross_entropy_with_logits( labels=Truth, logits=Pred ))
class Model():
def __init__(self, args):
self.args = args
"""class args:
rows=16
cols=640
baseinfo=10
hps = 128
hpdist = 33
"""
inputs = KK.layers.Input(shape=(args.rows,args.cols,args.baseinfo))
convNum = 256
baseadj = KK.layers.Conv2D(convNum, kernel_size= (16, 61), strides=(16,1),activation='relu', padding="same", name="baseadj")(inputs)
baseadj2 = KK.layers.Lambda( lambda xx: tf.squeeze( xx, 1), name="baseadj2")(baseadj)
#baseadjperm = KK.layers.Lambda( lambda xx: KK.backend.permute_dimensions(xx,(0,2,1,3)), name="baseadjperm")(baseadj)
#baseadjpermreshape = KK.layers.Reshape((args.cols, args.rows*convNum),name="baseadjpermreshape")(baseadjperm)
predBase0 = KK.layers.TimeDistributed( KK.layers.Dense(1024, activation='softmax'), name="out1024")(baseadj2)
################################
self.model = KK.models.Model(inputs=inputs, outputs=predBase0)
#self.model.summary()
print("================================")
for layer in self.model.layers:
print("layer: name",layer.name, "outputshape", layer.get_output_at(0).get_shape().as_list())
print("================================")
#myopt = KK.optimizers.SGD()
myopt = KK.optimizers.Adam()
self.model.compile(optimizer=myopt, loss="sparse_categorical_crossentropy") # loss="sparse_categorical_crossentropy") #, metrics=["categorical_accuracy",])"" "kullback_leibler_divergence" crossEntropySparseLoss
# # instrument tensorboard
# tf.summary.histogram('output', self.output)
# tf.summary.histogram('softmax_w', softmax_w)
# tf.summary.histogram('logits', self.logits)
# tf.summary.histogram('probs', self.probs)
# tf.summary.scalar('train_loss', self.cost)