forked from michaelbrownid/tfccs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_column_majority0.py
49 lines (38 loc) · 1.78 KB
/
model_column_majority0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
import tensorflow.keras as KK
import sys
import numpy as np
from . import struct
class Model():
def __init__(self, args):
self.args = args
"""class args:
rows=16
cols=640
baseinfo=10
hps = 128
hpdist = 33
"""
inputs = KK.layers.Input(shape=(args.rows,args.cols,args.baseinfo))
# call each position by base^Present, X^Missing. Could be 5 but using 16. Kernel=10-vector
baseadj = KK.layers.Conv2D(16, kernel_size= (1, 1), activation='relu')(inputs)
#majority = KK.backend.mean(baseadj, axis=[1])
majority = KK.layers.Lambda( lambda xx: KK.backend.mean( xx, axis=[1]), name="majority")(baseadj)
predBase = KK.layers.TimeDistributed( KK.layers.Dense(5, activation='softmax'))(majority)
# this should be (+ (* 10 16) (* 16 5))=240 parameters
################################
self.model = KK.models.Model(inputs=inputs, outputs=[predBase])
#self.model.summary()
print("================================")
for layer in self.model.layers:
print("layer: name",layer.name, "outputshape", layer.get_output_at(0).get_shape().as_list())
print("================================")
#myopt = KK.optimizers.SGD()
myopt = KK.optimizers.Adam()
self.model.compile(optimizer=myopt, loss="kullback_leibler_divergence") #, metrics=["categorical_accuracy",])"categorical_crossentropy"
# # instrument tensorboard
# tf.summary.histogram('output', self.output)
# tf.summary.histogram('softmax_w', softmax_w)
# tf.summary.histogram('logits', self.logits)
# tf.summary.histogram('probs', self.probs)
# tf.summary.scalar('train_loss', self.cost)