forked from michaelbrownid/tfccs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_QV_LR_mult_deep.py
32 lines (25 loc) · 1.19 KB
/
model_QV_LR_mult_deep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import tensorflow as tf
import tensorflow.keras as KK
import sys
import numpy as np
from . import struct
class Model():
def __init__(self, args):
self.args = args
inputs = KK.layers.Input(shape=(118,))
hidden1= KK.layers.Dense(120, activation='relu')(inputs)
hidden2= KK.layers.Dense(100, activation='relu')(hidden1)
hidden3= KK.layers.Dense(80, activation='relu')(hidden2)
hidden4= KK.layers.Dense(60, activation='relu')(hidden3)
hidden5= KK.layers.Dense(40, activation='relu')(hidden4)
hidden6= KK.layers.Dense(20, activation='relu')(hidden5)
out = KK.layers.Dense(8, activation='softmax')(hidden6)
self.model = KK.models.Model(inputs=inputs, outputs=[out])
self.model.summary()
print("================================")
for layer in self.model.layers:
print("layer: name",layer.name, "outputshape", layer.get_output_at(0).get_shape().as_list())
print("================================")
#myopt = KK.optimizers.SGD()
myopt = KK.optimizers.Adam()
self.model.compile(optimizer=myopt, loss="categorical_crossentropy") # loss="kullback_leibler_divergence")