forked from michaelbrownid/tfccs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-rationalRNNEncode.py
51 lines (40 loc) · 1.91 KB
/
model-rationalRNNEncode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import tensorflow as tf
import tensorflow.keras as KK
import sys
import numpy as np
from . import struct
class Model():
def __init__(self, args):
self.args = args
"""class args:
rows=16
cols=640
baseinfo=10
hps = 128
hpdist = 33
"""
inputs = KK.layers.Input(shape=(args.rows,args.cols,args.baseinfo))
baseadj = KK.layers.Conv2D(64, kernel_size= (1, 6), strides=(1,5), activation='relu')(inputs)
majority = KK.backend.mean(baseadj, axis=[1])
# layer: name Mean outputshape [None, 127, 64]
hidden_size= 128
#KK.layers.TimeDistributed(majority)
rnn1 = KK.layers.LSTM( hidden_size, return_sequences=True)(majority) # input_shape=(1,64),
predictionsHPLEN = KK.layers.Dense(33, activation='softmax')(rnn1)
predictionsHPID = KK.layers.Dense(4, activation='softmax')(rnn1)
predictionsCALL = KK.layers.Dense(2, activation='softmax')(rnn1)
################################
#self.model = KK.models.Model(inputs=inputs, outputs=[predictionsHPID,predictionsHPLEN])
self.model = KK.models.Model(inputs=inputs, outputs=[predictionsHPLEN])
#self.model.summary()
print("================================")
for layer in self.model.layers:
print("layer: name",layer.name, "outputshape", layer.get_output_at(0).get_shape().as_list())
print("================================")
self.model.compile(optimizer="adam", loss="categorical_crossentropy") #, metrics=["categorical_accuracy","kullback_leibler_divergence"])
# # instrument tensorboard
# tf.summary.histogram('output', self.output)
# tf.summary.histogram('softmax_w', softmax_w)
# tf.summary.histogram('logits', self.logits)
# tf.summary.histogram('probs', self.probs)
# tf.summary.scalar('train_loss', self.cost)