-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
21 lines (16 loc) · 933 Bytes
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# # anonymizePy Data Anonymization Example
# import data anonymization methods
from anonymizePy import PIIGenerator, DataAnonymizer, ModelEvaluator
# Specify data paths
labeled_datapath = "call_data.csv" # labeled input
unanonymized_datapath = "call_data_With_Identifiers.csv" # original input with faux PII
anonymized_datapath = "call_data_Anonymized.csv" # anonymized output
# 1. Insert randomly generated PII into data
pii_generator = PIIGenerator()
pii_generator.insert_pii(labeled_datapath, unanonymized_datapath)
# 2. Deploy the case anonymizer
data_anonymizer = DataAnonymizer()
data_anonymizer.anonymizer(unanonymized_datapath, anonymized_datapath, use_ner=True, use_regex=True, use_resources=False, ignore_columns=["Assessment", "Homeless", "Gender", "Call Sign"])
# 3. Evaluate the model performance
evaluator = ModelEvaluator()
evaluator.evaluate_model(labeled_datapath, unanonymized_datapath, anonymized_datapath)