|
| 1 | +import numpy as np |
| 2 | +import astropy |
| 3 | +import pandas as pd |
| 4 | +from astropy.io import fits |
| 5 | +from astropy.table import Table |
| 6 | +import os |
| 7 | +import hoki |
| 8 | +import time |
| 9 | +from hoki import load |
| 10 | +import glob |
| 11 | + |
| 12 | +""" Simplifies the stellar evolution models relevant to cluster into one place. |
| 13 | + May be slow later. But better than dealing with many many, |
| 14 | + Files all at once manually. |
| 15 | + colsToElim are columns whose values' significance I don't know? |
| 16 | + We eliminate those. """ |
| 17 | +"""Source: https://stackoverflow.com/questions/44369504/ |
| 18 | +how-to-convert-entire-dataframe-values-to-float-in-pandas""" |
| 19 | + |
| 20 | +colsToElim = [x for x in range(96) if x not in [hoki.dummy_dict[y] |
| 21 | + for y in hoki.dummy_dict.keys()]] |
| 22 | + |
| 23 | + |
| 24 | +def reformatter(SinOrBin, model, metallicity='z020', evo_dir): |
| 25 | + """I will expedite the process of writing and saving files by |
| 26 | + making the BPASS stellar input files binary fits tables """ |
| 27 | + t1 = time.time() |
| 28 | + Entries = [] |
| 29 | + dummyDic = hoki.dummy_dict |
| 30 | + entries = load.model_input(bpass_dir + |
| 31 | + 'BPASSv2.2.1_' + SinOrBin + '-' + |
| 32 | + model + '/' + 'input_bpass_' + |
| 33 | + metallicity + '_' + SinOrBin + |
| 34 | + '_' + model) |
| 35 | + i = 0 |
| 36 | + for x in entries.filenames: |
| 37 | + if x[0] != '.': |
| 38 | + try: |
| 39 | + f = pd.read_csv(hoki.MODELS_PATH + x, sep="\s+", |
| 40 | + header=None) |
| 41 | + f.apply(pd.to_numeric, errors='coerce') |
| 42 | + astroTable = Table.from_pandas(astroTable) |
| 43 | + if not os.path.isdir(evo_dir + "iso/" + metallicity + '/' + |
| 44 | + model + "/" + SinOrBin + |
| 45 | + "/" + "FitsModels"): |
| 46 | + os.makedirs(evo_dir + |
| 47 | + 'iso/' + metallicity + '/' + model + |
| 48 | + "/" + SinOrBin + "/" + "FitsModels") |
| 49 | + f.write(evo_dir + |
| 50 | + 'iso/' + metallicity+"/" + model + |
| 51 | + "/" + SinOrBin + "/" + "FitsModels/" + |
| 52 | + fileName[:-4] + ".fits", format='fits') |
| 53 | + except FileNotFoundError: |
| 54 | + print("File not Readable/Found") |
| 55 | + |
| 56 | + |
| 57 | +def extractor(SinOrBin, model, age, metallicity='z020', bpass_evo_dir, |
| 58 | + margin_of_logAge_error): |
| 59 | + t1 = time.time() |
| 60 | + entries = glob.glob(evo_dir + |
| 61 | + 'iso/' + metallicity+"/" + model + |
| 62 | + "/" + SinOrBin + "/" + "FitsModels/*") |
| 63 | + Entries = [] |
| 64 | + dummyDic = hoki.dummy_dict |
| 65 | + for x in entries: |
| 66 | + if x[0] != '.': |
| 67 | + try: |
| 68 | + f = Table.read(bpass_evo_dir) |
| 69 | + f = f.to_pandas() |
| 70 | + if f[f.columns[1]].tolist() != []: |
| 71 | + |
| 72 | + # Make sure that whatever that is being put into the table |
| 73 | + # is practically the desired age |
| 74 | + f = f[(f[f.columns[1]] < 10 ** (age + 0.5)) & |
| 75 | + (f[f.columns[1]] > 10 ** (age - 0.5))] |
| 76 | + f.transpose() |
| 77 | + Entries.append(f) |
| 78 | + except FileNotFoundError: |
| 79 | + print('File Not Found') |
| 80 | + print('Onto Reducing the data') |
| 81 | + reduced = reducing(Entries) |
| 82 | + try: |
| 83 | + if not isinstance(reduced, type(None)) and not reduced.empty: |
| 84 | + reduced = Table.from_pandas(reduced) |
| 85 | + if not os.path.isdir('/g/lu/models/evolution/BPASS/v2.2/' + |
| 86 | + 'iso/' + metallicity + '/'): |
| 87 | + os.makedirs('/g/lu/models/evolution/BPASS/v2.2/' + |
| 88 | + 'iso/' + metallicity + '/') |
| 89 | + if not os.path.isfile('/g/lu/models/evolution/BPASS/v2.2/' + |
| 90 | + 'iso/' + metallicity + '/' + str(age) + |
| 91 | + '.fits'): |
| 92 | + reduced.write('/g/lu/models/' + |
| 93 | + 'evolution/BPASS/v2.2/' + |
| 94 | + 'iso/' + metallicity + |
| 95 | + '/' + 'iso' + str(age) + |
| 96 | + '.fits', format='fits') |
| 97 | + return reduced |
| 98 | + except IndexError: |
| 99 | + print ('It looks like there are no stars in out input file' + |
| 100 | + ' that have the specified age...') |
| 101 | + |
| 102 | + |
| 103 | +def reducing(lis): |
| 104 | + if lis != [] and not isinstance(lis[0], type(None)) and not lis[0].empty: |
| 105 | + temp = pd.DataFrame(lis.pop()).transpose() |
| 106 | + while lis != [] and not isinstance(lis[0], type(None)) and |
| 107 | + not lis[0].empty: |
| 108 | + popd = pd.DataFrame(lis.pop()).transpose() |
| 109 | + temp = pd.DataFrame(temp) |
| 110 | + temp = pd.concat([temp, popd], axis=0) |
| 111 | + # Make a reverse map |
| 112 | + # Citation: https://stackoverflow.com/questions/483666/reverse-invert-a |
| 113 | + # dictionary-mapping |
| 114 | + temp.drop(columns=[temp.columns[x] for x in colsToElim], inplace=True) |
| 115 | + invmap = {u: v for v, u in hoki.dummy_dict.items()} |
| 116 | + temp.rename(columns=invmap, inplace=True) |
| 117 | + for x in temp.columns: |
| 118 | + temp[x] = pd.to_numeric(temp[x], errors='coerce') |
| 119 | + return temp |
| 120 | + else: |
| 121 | + print("Empty list inputted!") |
0 commit comments