-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmusic_transcription_with_transformers.py
341 lines (267 loc) · 12.4 KB
/
music_transcription_with_transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-
"""Music Transcription with Transformers
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/magenta/mt3/blob/main/mt3/colab/music_transcription_with_transformers.ipynb
<a href="https://colab.research.google.com/github/magenta/mt3/blob/main/mt3/colab/music_transcription_with_transformers.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# Music Transcription with Transformers
This notebook is an interactive demo of a few [music transcription models](g.co/magenta/mt3) created by Google's [Magenta](g.co/magenta) team. You can upload audio and have one of our models automatically transcribe it.
<img src="https://magenta.tensorflow.org/assets/transcription-with-transformers/architecture_diagram.png" alt="Transformer-based transcription architecture">
The notebook supports two pre-trained models:
1. the piano transcription model from [our ISMIR 2021 paper](https://archives.ismir.net/ismir2021/paper/000030.pdf)
1. the multi-instrument transcription model from [our ICLR 2022 paper](https://openreview.net/pdf?id=iMSjopcOn0p)
**Caveat**: neither model is trained on singing. If you upload audio with vocals, you will likely get weird results. Multi-instrument transcription is still not a completely-solved problem and so you may get weird results regardless.
In any case, we hope you have fun transcribing! Feel free to tweet any interesting output at [@GoogleMagenta](https://twitter.com/googlemagenta)...
### Instructions for running:
* Make sure to use a GPU runtime, click: __Runtime >> Change Runtime Type >> GPU__
* Press ▶️ on the left of each cell to execute the cell
* In the __Load Model__ cell, choose either `ismir2021` for piano transcription or `mt3` for multi-instrument transcription
* In the __Upload Audio__ cell, choose an MP3 or WAV file from your computer when prompted
* Transcribe the audio using the __Transcribe Audio__ cell (it may take a few minutes depending on the length of the audio)
"""
# Copyright 2021 Google LLC. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#@title Setup Environment
#@markdown Install MT3 and its dependencies (may take a few minutes).
!apt-get update -qq && apt-get install -qq libfluidsynth1 build-essential libasound2-dev libjack-dev
!pip install --upgrade pip
!pip install nest-asyncio
!pip install pyfluidsynth
# install t5x
!git clone --branch=main https://github.com/google-research/t5x
!mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp
!sed -i 's:jax\[tpu\]:jax:' setup.py
!python3 -m pip install -e .
# install mt3
!git clone --branch=main https://github.com/magenta/mt3
!mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp
!python3 -m pip install -e .
# copy checkpoints
!gsutil -q -m cp -r gs://mt3/checkpoints .
# copy soundfont (originally from https://sites.google.com/site/soundfonts4u)
!gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .
#@title Imports and Definitions
import functools
import os
import numpy as np
import tensorflow.compat.v2 as tf
import functools
import gin
import jax
import librosa
import note_seq
import seqio
import t5
import t5x
from mt3 import metrics_utils
from mt3 import models
from mt3 import network
from mt3 import note_sequences
from mt3 import preprocessors
from mt3 import spectrograms
from mt3 import vocabularies
from google.colab import files
import nest_asyncio
nest_asyncio.apply()
SAMPLE_RATE = 16000
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
def upload_audio(sample_rate):
data = list(files.upload().values())
if len(data) > 1:
print('Multiple files uploaded; using only one.')
return note_seq.audio_io.wav_data_to_samples_librosa(
data[0], sample_rate=sample_rate)
class InferenceModel(object):
"""Wrapper of T5X model for music transcription."""
def __init__(self, checkpoint_path, model_type='mt3'):
# Model Constants.
if model_type == 'ismir2021':
num_velocity_bins = 127
self.encoding_spec = note_sequences.NoteEncodingSpec
self.inputs_length = 512
elif model_type == 'mt3':
num_velocity_bins = 1
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
self.inputs_length = 256
else:
raise ValueError('unknown model_type: %s' % model_type)
gin_files = ['/content/mt3/gin/model.gin',
f'/content/mt3/gin/{model_type}.gin']
self.batch_size = 8
self.outputs_length = 1024
self.sequence_length = {'inputs': self.inputs_length,
'targets': self.outputs_length}
self.partitioner = t5x.partitioning.ModelBasedPjitPartitioner(
model_parallel_submesh=(1, 1, 1, 1), num_partitions=1)
# Build Codecs and Vocabularies.
self.spectrogram_config = spectrograms.SpectrogramConfig()
self.codec = vocabularies.build_codec(
vocab_config=vocabularies.VocabularyConfig(
num_velocity_bins=num_velocity_bins))
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
self.output_features = {
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
'targets': seqio.Feature(vocabulary=self.vocabulary),
}
# Create a T5X model.
self._parse_gin(gin_files)
self.model = self._load_model()
# Restore from checkpoint.
self.restore_from_checkpoint(checkpoint_path)
@property
def input_shapes(self):
return {
'encoder_input_tokens': (self.batch_size, self.inputs_length),
'decoder_input_tokens': (self.batch_size, self.outputs_length)
}
def _parse_gin(self, gin_files):
"""Parse gin files used to train the model."""
gin_bindings = [
'from __gin__ import dynamic_registration',
'from mt3 import vocabularies',
'[email protected]()',
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
]
with gin.unlock_config():
gin.parse_config_files_and_bindings(
gin_files, gin_bindings, finalize_config=False)
def _load_model(self):
"""Load up a T5X `Model` after parsing training gin config."""
model_config = gin.get_configurable(network.T5Config)()
module = network.Transformer(config=model_config)
return models.ContinuousInputsEncoderDecoderModel(
module=module,
input_vocabulary=self.output_features['inputs'].vocabulary,
output_vocabulary=self.output_features['targets'].vocabulary,
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
input_depth=spectrograms.input_depth(self.spectrogram_config))
def restore_from_checkpoint(self, checkpoint_path):
"""Restore training state from checkpoint, resets self._predict_fn()."""
train_state_initializer = t5x.utils.TrainStateInitializer(
optimizer_def=self.model.optimizer_def,
init_fn=self.model.get_initial_variables,
input_shapes=self.input_shapes,
partitioner=self.partitioner)
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
path=checkpoint_path, mode='specific', dtype='float32')
train_state_axes = train_state_initializer.train_state_axes
self._predict_fn = self._get_predict_fn(train_state_axes)
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
@functools.lru_cache()
def _get_predict_fn(self, train_state_axes):
"""Generate a partitioned prediction function for decoding."""
def partial_predict_fn(params, batch, decode_rng):
return self.model.predict_batch_with_aux(
params, batch, decoder_params={'decode_rng': None})
return self.partitioner.partition(
partial_predict_fn,
in_axis_resources=(
train_state_axes.params,
t5x.partitioning.PartitionSpec('data',), None),
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
)
def predict_tokens(self, batch, seed=0):
"""Predict tokens from preprocessed dataset batch."""
prediction, _ = self._predict_fn(
self._train_state.params, batch, jax.random.PRNGKey(seed))
return self.vocabulary.decode_tf(prediction).numpy()
def __call__(self, audio):
"""Infer note sequence from audio samples.
Args:
audio: 1-d numpy array of audio samples (16kHz) for a single example.
Returns:
A note_sequence of the transcribed audio.
"""
ds = self.audio_to_dataset(audio)
ds = self.preprocess(ds)
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
ds, task_feature_lengths=self.sequence_length)
model_ds = model_ds.batch(self.batch_size)
inferences = (tokens for batch in model_ds.as_numpy_iterator()
for tokens in self.predict_tokens(batch))
predictions = []
for example, tokens in zip(ds.as_numpy_iterator(), inferences):
predictions.append(self.postprocess(tokens, example))
result = metrics_utils.event_predictions_to_ns(
predictions, codec=self.codec, encoding_spec=self.encoding_spec)
return result['est_ns']
def audio_to_dataset(self, audio):
"""Create a TF Dataset of spectrograms from input audio."""
frames, frame_times = self._audio_to_frames(audio)
return tf.data.Dataset.from_tensors({
'inputs': frames,
'input_times': frame_times,
})
def _audio_to_frames(self, audio):
"""Compute spectrogram frames from audio."""
frame_size = self.spectrogram_config.hop_width
padding = [0, frame_size - len(audio) % frame_size]
audio = np.pad(audio, padding, mode='constant')
frames = spectrograms.split_audio(audio, self.spectrogram_config)
num_frames = len(audio) // frame_size
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
return frames, times
def preprocess(self, ds):
pp_chain = [
functools.partial(
t5.data.preprocessors.split_tokens_to_inputs_length,
sequence_length=self.sequence_length,
output_features=self.output_features,
feature_key='inputs',
additional_feature_keys=['input_times']),
# Cache occurs here during training.
preprocessors.add_dummy_targets,
functools.partial(
preprocessors.compute_spectrograms,
spectrogram_config=self.spectrogram_config)
]
for pp in pp_chain:
ds = pp(ds)
return ds
def postprocess(self, tokens, example):
tokens = self._trim_eos(tokens)
start_time = example['input_times'][0]
# Round down to nearest symbolic token step.
start_time -= start_time % (1 / self.codec.steps_per_second)
return {
'est_tokens': tokens,
'start_time': start_time,
# Internal MT3 code expects raw inputs, not used here.
'raw_inputs': []
}
@staticmethod
def _trim_eos(tokens):
tokens = np.array(tokens, np.int32)
if vocabularies.DECODED_EOS_ID in tokens:
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
return tokens
#@title Load Model
#@markdown The `ismir2021` model transcribes piano only, with note velocities.
#@markdown The `mt3` model transcribes multiple simultaneous instruments,
#@markdown but without velocities.
MODEL = "mt3" #@param["ismir2021", "mt3"]
checkpoint_path = f'/content/checkpoints/{MODEL}/'
inference_model = InferenceModel(checkpoint_path, MODEL)
#@title Upload Audio
audio = upload_audio(sample_rate=SAMPLE_RATE)
note_seq.notebook_utils.colab_play(audio, sample_rate=SAMPLE_RATE)
#@title Transcribe Audio
#@markdown This may take a few minutes depending on the length of the WAV file
#@markdown you uploaded.
est_ns = inference_model(audio)
note_seq.play_sequence(est_ns, synth=note_seq.fluidsynth,
sample_rate=SAMPLE_RATE, sf2_path=SF2_PATH)
note_seq.plot_sequence(est_ns)
#@title Download MIDI Transcription
note_seq.sequence_proto_to_midi_file(est_ns, '/tmp/transcribed.mid')
files.download('/tmp/transcribed.mid')