-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
677 lines (555 loc) · 28.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import plotly.express as px
import plotly.graph_objects as go
import plotly.subplots as sp
import plotly.io as pio
from read_datasets import Datasets
from read_datasets import Datasets
from BuildTsModel import evaluate_forecast
import streamlit as st
# Set the page layout
st.set_page_config(layout="wide", page_title = "Real-Time Dashboard", page_icon = "Active")
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
st.markdown(
"""
<style>
body {
background-color: white;
}
</style>
""",
unsafe_allow_html=True
)
# Remove the white space at the top of the page
st.markdown("""
<style>
.block-container {
padding-top: 1rem;
padding-bottom: 0rem;
padding-left: 5rem;
padding-right: 5rem;
}
</style>
""", unsafe_allow_html=True)
# read the data
datasets = Datasets()
train, test, entire_data, cma, seasonal_indices_series, residuals, \
seasonal_indices_df, hw_forecast_dev_mean, \
hw_forecast_dev_lower, hw_forecast_dev_upper, hw_forecast_mean, \
hw_forecast_lower, hw_forecast_upper, hw_forecast = datasets.get_datasets()
# Update the dashboard with the latest data
if len(test) > len(hw_forecast_dev_mean):
diff = len(test) - len(hw_forecast_dev_mean)
last_date = hw_forecast_dev_mean.index[-1]
next_dates = []
for i in range(1, diff+1):
next_date = last_date + pd.DateOffset(months=i)
next_dates.append(next_date)
next_values = hw_forecast_mean.loc[next_dates]
hw_forecast_dev_mean = pd.concat([hw_forecast_dev_mean, pd.Series(next_values, index=next_values.index)])
tab1, tab2 = st.tabs(["Monitor", "Analysis"])
with tab1:
# a1 = st.columns(1)
# # Place the first plot in the first column
# with a1:
# Row A
# Create a trace for the seasonal indices
fig = px.line(entire_data, x=entire_data.index, y=entire_data, title='<b>Real Advance Retail Sales in US: Retail Trade</b>')
fig.update_xaxes(title_text='<b>Month</b>', tickfont=dict(family='Arial', size=12))
fig.update_yaxes(title_text='<b>Billions of 2023 Dollars</b>', tickfont=dict(family='Arial', size=12))
fig.update_xaxes(rangeslider_visible=True)
fig.update_layout(title=dict(x=0.5, y=0.9, font=dict(size=20)))
fig.update_yaxes(tickfont_family="Arial Black")
fig.update_xaxes(tickfont_family="Arial Black")
fig.update_traces(hovertemplate='Month: %{x}<br>Sales: %{y:.2f}<extra></extra>')
fig.add_trace(go.Scatter(
x=hw_forecast_mean.index,
y=hw_forecast_mean,
mode='lines',
line=dict(color='black', width=2),
name='<b>Forecast</b>',
hovertemplate='Month: %{x}<br>Sales: %{y:.2f}<extra></extra>'
))
fig.add_trace(go.Scatter(
x=test["2023-05-01":].index,
y=test["2023-05-01":],
mode='markers',
marker=dict(symbol='star', color='purple', size=10),
name='<b>Actual</b>',
hovertemplate='Month: %{x}<br>Sales: %{y:.2f}<extra></extra>'
))
fig.add_trace(go.Scatter(
x=hw_forecast_upper.index,
y=hw_forecast_upper,
mode='lines',
line=dict(color='blue'),
name='<b>95% Confidence Interval</b>',
fill='tonexty',
fillcolor='rgba(0, 0, 255, 0.2)',
line_shape='spline',
hovertemplate='Month: %{x}<br>Max. Sales: %{y:.2f}<extra></extra>'
))
fig.add_trace(go.Scatter(
x=hw_forecast_lower.index,
y=hw_forecast_lower,
mode='lines',
line=dict(color='blue'),
showlegend=False,
fill='tonexty',
fillcolor='rgba(0, 0, 255, 0.2)',
line_shape='spline',
hovertemplate='Month: %{x}<br>Min. Sales: %{y:.2f}<extra></extra>'
))
fig.update_layout(
title=dict(
text='<b>Real Advance Retail Sales in US: Retail Trade</b>',
x=0.35,
y=0.85,
font=dict(size=20)
)
)
fig.update_layout(legend=dict(
font=dict(size=12),
orientation="h",
yanchor="bottom",
y=1,
xanchor="right",
x=0.6
))
fig.update_layout(height=400, width=1200, showlegend=True, margin=dict(t=160, b=0, l=0, r=0))
st.plotly_chart(fig)
# a1,a2, a3, a4, a5 = st.columns(5, gap="small")
st.markdown("""<h3 style='text-align: center;font-family:Arial Black;
font-size: 17.5px ;'>Performance Metrics</h3>""",
unsafe_allow_html=True)
b1, b2, b3, b4, b5, b6, b7, b8, b9 = st.columns(9)
last_models_metrics = evaluate_forecast('Holt-Winters Model', test[:-1], hw_forecast_dev_mean[:-1])
current_models_metrics = evaluate_forecast('Holt-Winters Model', test[:], hw_forecast_dev_mean[:])
# with a1:
# # Add an empty line before the plot to push it to the top of the page
# st.write("")
# st.plotly_chart(fig3)
# Row b
st.markdown("""
<style>
[data-testid=stVerticalBlock] {
gap: 0.9rem;
}
[data-testid=stHorizontalBlock] > div {
padding-right: 0.1rem !important;
padding-left: 0.1rem !important;
}
</style>
""", unsafe_allow_html=True)
with b1:
# Render the metrics in a nice grey background
# add the title performance metrics
# Define the custom CSS style
custom_style = """
<style>
.dashboard {
background-color: #f2f2f2;
padding: 10px;
border-radius: 8px;
}
.metric {
margin-bottom: 8px;
font-size: 20px;
font-family: Arial Black, sans-serif;
}
</style>
"""
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center; font-family: Helvetica ; font-size: 10px;">
Last date:{}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Last MAPE
</div>
<div class="metric" style="text-align: center; color: blue; font-family: Arial Black; font-size: 16px">
<b>{}%</b>
</div>
</div>
""".format(test.index.date[-2], last_models_metrics['MAPE'].round(2)), unsafe_allow_html=True)
with b2:
# Render the metrics in a nice grey background
# add the title performance metrics
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Chnage the color of the metric based on the performance
if current_models_metrics['MAPE'] < last_models_metrics['MAPE']:
color = 'green'
else:
color = 'red'
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center;font-family: Arial; font-size: 10px;">
Updated: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Current MAPE
</div>
<div class="metric" style="text-align: center; color: {}; font-family: Arial Black; font-size: 16px">
<b>{}%</b>
</div>
</div>
""".format(test.index.date[-1],
color, current_models_metrics['MAPE'].round(2)), unsafe_allow_html=True)
with b3:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center; font-family: Helvetica ; font-size: 10px;">
Last date:{}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Last RMSE
</div>
<div class="metric" style="text-align: center; color: blue; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-2],
last_models_metrics['RMSE'].round(2)), unsafe_allow_html=True)
with b4:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Chnage the color of the metric based on the performance
if current_models_metrics['RMSE'] < last_models_metrics['RMSE']:
color = 'green'
else:
color = 'red'
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center;font-family: Arial; font-size: 10px;">
Updated: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Current RMSE
</div>
<div class="metric" style="text-align: center; color: {};; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-1],
color,
current_models_metrics['RMSE'].round(2)), unsafe_allow_html=True)
with b5:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center; font-family: Helvetica ; font-size: 10px;">
Last date:{}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Last MAE
</div>
<div class="metric" style="text-align: center; color: blue;; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-2],
last_models_metrics['MAE'].round(2)), unsafe_allow_html=True)
with b6:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Chnage the color of the metric based on the performance
if current_models_metrics['MAE'] < last_models_metrics['MAE']:
color = 'green'
else:
color = 'red'
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center;font-family: Arial; font-size: 10px;">
Updated: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Current MAE
</div>
<div class="metric" style="text-align: center; color: {};; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-1],
color,
current_models_metrics['MAE'].round(2)), unsafe_allow_html=True)
with b7:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center;font-family: Arial; font-size: 10px;">
Updated: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Actual
</div>
<div class="metric" style="text-align: center; color: blue; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-1], test.iloc[-1].round(2)), unsafe_allow_html=True)
with b8:
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center; font-family: Helvetica ; font-size: 10px;">
Updated: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Forecast
</div>
<div class="metric" style="text-align: center; color: blue;; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(test.index.date[-1],
hw_forecast_dev_mean[-1].round(2)), unsafe_allow_html=True)
with b9:
# Get the last date in the test set
last_date = test.index[-1]
# Generate the next date
next_date = pd.date_range(start=last_date, periods=2, freq='MS')[1]
# Render the metrics in a nice grey background
# Render the custom CSS
st.markdown(custom_style, unsafe_allow_html=True)
# Render the metrics in the dashboard layout
st.markdown("""
<div class="dashboard">
<div class="metric" style="text-align: center; font-family: Helvetica ; font-size: 10px;">
Next date: {}
</div>
<div class="metric", style='text-align: center; font-family: Arial Black; font-size: 16px'>
Next Forecast
</div>
<div class="metric" style="text-align: center; color: blue;; font-family: Arial Black; font-size: 16px">
<b>{}</b>
</div>
</div>
""".format(next_date.date(),
hw_forecast_mean[next_date].round(2)), unsafe_allow_html=True)
with tab2:
st.markdown("""<p style='text-align: center;font-family:Arial Black;
font-size: 25px ;'>A closer look into the data</p>""",
unsafe_allow_html=True)
# Display information about the performance metrics
st.markdown("## Performance Metrics")
st.markdown("")
st.markdown("### Root Mean Squared Error (RMSE)")
st.markdown("")
st.markdown("The Root Mean Squared Error (RMSE) is a commonly used metric to measure the average deviation between the predicted and actual values. It provides an overall indication of the forecast accuracy, taking into account both the magnitude and direction of the errors. The RMSE is measured in the same units as the forecasted variable, which in this case is in billions of dollars.")
st.markdown("")
st.markdown("### Mean Absolute Percentage Error (MAPE)")
st.markdown("")
st.markdown("The Mean Absolute Percentage Error (MAPE) is a metric that measures the average percentage deviation between the predicted and actual values. It provides a relative measure of the forecast accuracy and is particularly useful when comparing forecasts across different time periods or datasets. The MAPE is expressed as a percentage.")
st.markdown("")
st.markdown("### Mean Absolute Error (MAE)")
st.markdown("")
st.markdown("The Mean Absolute Error (MAE) is a metric that measures the average absolute deviation between the predicted and actual values. It provides a simple and interpretable measure of the forecast accuracy, representing the average magnitude of the errors. The MAE is measured in the same units as the forecasted variable, which in this case is in billions of dollars.")
st.markdown("")
st.markdown("Please keep in mind that these metrics serve as indicators of forecast accuracy, and it's important to consider them in conjunction with other factors when assessing the quality of the forecasts.")
st.markdown("")
# Create the columns with unequal width
c1 = st.columns(1)
# Display the decomposed plots
# Add the explanation about classical decomposition
st.markdown("""
<h3 style='font-size: 20px; text-align: center;'>Classical Decomposition</h3>
<p>The classical decomposition is a method used to break down a time series into its underlying components, namely the trend,
seasonal indices, and residuals. This decomposition helps to understand the individual patterns and variations within the data.</p>
<p><b>Trend:</b> The trend component represents the long-term, systematic changes or patterns in the data. It captures the overall
direction in which the series is moving, regardless of the seasonal or irregular fluctuations. The trend provides insights into
the underlying growth or decline of the phenomenon being observed.</p>
<p><b>Seasonal component:</b> The seasonal indices reveal the systematic, recurring patterns or fluctuations that occur within a
specific time period, such as daily, weekly, monthly, or yearly. These indices measure the deviation from the average for each
corresponding period. By examining the seasonal indices, one can identify the seasonal effects and their impact on the series.
This information is valuable for forecasting and understanding the seasonality of the data.</p>
<p><b>Residuals:</b> The residuals, also known as the irregular component or noise, represent the unexplained variation in the
data after removing the trend and seasonal effects. These residuals capture the random or unpredictable fluctuations that cannot
be accounted for by the trend and seasonality. Analyzing the residuals helps to identify any remaining patterns or anomalies
in the data that are not explained by the trend and seasonality.</p>
<p>By decomposing a time series into its components, analysts can gain insights into the different sources of variation,
make informed decisions based on the individual components, and develop more accurate forecasts by modeling the trend, seasonality,
and residuals separately.</p>
""", unsafe_allow_html=True)
# Create a subplot figure with three subplots
fig2 = sp.make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0, horizontal_spacing=0)
# Subplot 1: Training data and trend component
fig2.add_trace(go.Scatter(x=train.index, y=train, name='<b>Train</b>', line=dict(color='red'),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=1, col=1)
fig2.add_trace(go.Scatter(x=cma.index, y=cma, name='<b>Trend-CMA</b>', line=dict(color='black'),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=1, col=1)
# Subplot 2: Seasonal component
fig2.add_trace(go.Scatter(x=seasonal_indices_series.index, y=seasonal_indices_series,
name='<b>Seasonal Component</b>', line=dict(color='green', width=2),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=2, col=1)
# Subplot 3: Residuals component
fig2.add_trace(go.Scatter(x=residuals.index, y=residuals, name='<b>Residuals</b>', line=dict(color='purple'),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=3, col=1)
fig2.add_trace(go.Scatter(x=residuals.index, y=residuals.rolling(window=12).mean(),
name='<b>12 Rolling Mean</b>', line=dict(color='orange'),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=3, col=1)
fig2.add_trace(go.Scatter(x=residuals.index, y=residuals.rolling(window=12).std(),
name='<b>12 Rolling Std</b>', line=dict(color='blue'),
hovertemplate='Month: %{x}<br>Sales: %{y}'), row=3, col=1)
# Customize the layout and axes titles for subplot figure
fig2.update_layout(
title='<b>Retail Sales Decomposition</b>',
title_font=dict(size=20),
title_x=0.3, # Center the title horizontally
xaxis=dict(title=''),
yaxis=dict(title='', domain=[0.65, 1]),
yaxis2=dict(title='<b>Billions of 2023 Dollars</b>', domain=[0.35, 0.6]),
yaxis3=dict(title='', domain=[0, 0.25]),
)
# Add legends to the subplots
fig2.add_trace(go.Scatter(name='<b>Train</b>'), row=1, col=1)
fig2.add_trace(go.Scatter(name='<b>Trend-CMA</b>'), row=1, col=1)
fig2.add_trace(go.Scatter(name='<b>Seasonal Component</b>'), row=2, col=1)
fig2.add_trace(go.Scatter(name='<b>Residuals</b>'), row=3, col=1)
fig2.add_trace(go.Scatter(name='<b>12 Rolling Mean</b>'), row=3, col=1)
fig2.add_trace(go.Scatter(name='<b>12 Rolling Std</b>'), row=3, col=1)
# Adjust the subplot spacing
fig2.update_layout(height=500, width=1200, showlegend=True, margin=dict(t=100, b=0, l=0, r=0))
# Adjust the legend position
fig2.update_layout(legend=dict(
font=dict(size=12),
orientation="h",
yanchor="bottom",
y=1,
xanchor="right",
x=0.75
))
# adjust the layout of the title
fig2.update_layout(title=dict(x=0.4, y=0.95))
# Set the x-axis title at the bottom
fig2.update_xaxes(title='<b>Month</b>', row=3, col=1)
fig2.update_yaxes(tickfont_family="Arial Black")
fig2.update_xaxes(tickfont_family="Arial Black")
st.plotly_chart(fig2)
c2 = st.columns(1)
#Add explanation about seasonal indices
st.markdown("""
<p>The seasonal indices provide valuable insights into the comparison between each season and the yearly average,
indicating whether values are lower or higher by a specific amount or percentage.</p>
<p>For instance, the seasonal index for January reveals a decrease of $46.64 billion, indicating that January sales
are below the yearly average.</p>
<p>On the other hand, the seasonal index for December shows an impressive increase of $77.40 billion, representing
a significant rise of 2397.7% compared to the previous month. This remarkable surge suggests that December sales
surpass the yearly average, outperforming all other months. This analysis aligns perfectly with the expected pattern,
as sales typically experience a surge towards the end of the year due to Christmas and other major sales events.
Consequently, sales observe a notable decline as people reduce their purchasing activities after the holiday season.</p>
<p>This information helps to understand the seasonal patterns and trends in sales, allowing for better decision-making
and planning in the retail industry.</p>""", unsafe_allow_html=True)
# Set the template to ggplot2
pio.templates.default = "ggplot2"
# Create a trace for the seasonal indices
trace = go.Scatter(x=list(range(1, len(seasonal_indices_df.iloc[:,0]) + 1)),
y=seasonal_indices_df.iloc[:,0],
mode='lines',
line=dict(color='blue', width=2),
name='Seasonal Indices',
text=[f"{round(index, 2)}" for index in seasonal_indices_df.iloc[:,0]])
# Create a trace for the annotations
annotations = []
for index, row in seasonal_indices_df.iterrows():
annotations.append(dict(x=index + 1, y=row['seasonal_indices'], text=f"{row['seasonal_indices']}",
font=dict(size=10)))
# Create a layout for the plot
layout = go.Layout(title=dict(text="<b>Seasonal Indices in Billions of Dollars for Retail Sales in US</b> ", font=dict(size=15)),
xaxis=dict(title=dict(text='<b>Month</b>', font=dict(size=12)),
tickfont=dict(size=15),
dtick=1),
yaxis=dict(title=dict(text='<b>Billons of 2023 Dollars</b>',font=dict(size=12))),
hovermode='x',
hoverlabel=dict(bgcolor='white', font=dict(size=12)),
margin=dict(l=50, r=50, t=80, b=50),
legend=dict(x=0.05, y=0.95, bgcolor='white', bordercolor='gray', borderwidth=1, font=dict(size=12)))
# Create a figure and plot the data
fig3 = go.Figure(data=[trace], layout=layout)
# Update the y-axis label font family of fig3
fig3.update_yaxes(title_font=dict(family="Arial Black"), tickfont_family="Arial Black")
fig3.update_xaxes(title_font=dict(family="Arial Black"), tickfont_family="Arial Black")
fig3.update_xaxes(range=[1, 12])
fig3.update_layout(
title=dict(
x=0.3,
y=1,
font=dict(size=20)
)
)
def hovertext(value, percent):
if value > 0:
return f"<b>Change: <span style='color:green'>{value} ({percent}%)</span></b>"
else:
return f"<b>Change: <span style='color:red'>{value} ({percent}%)</span></b>"
# fig.update_traces(hovertemplate='%{y:.2f}<extra></extra>')
fig3.update_traces(text=[hovertext(value, percent) if pd.notna(value) else 'N/A'
for value, percent in zip(seasonal_indices_df.iloc[:,1], seasonal_indices_df.iloc[:,2])])
fig3.update_layout(height=500, width=1200, margin=dict(t=50, b=0, l=0, r=0))
# Display the seasonal indices graph
st.plotly_chart(fig3)
import streamlit as st
# Display the table
# Add the explanation about the components
st.markdown("""
<h3 style='font-size: 20px; text-align: center;'>Holt-Winters Forecast </h3>
<p>The Holt-Winters model is a popular method for forecasting time series data that incorporates trends and seasonality.
The forecast table consists of four components: forecasted values, standard error, lower 95% confidence interval (CI),
and upper 95% confidence interval (CI). These components provide valuable information for understanding and utilizing the forecast.</p>
<p><b>Forecasted Values:</b> The forecasted values represent the predicted values for the future time periods based on the Holt-Winters model.
These values indicate the expected trend and seasonality patterns in the data and can be used for making future predictions.</p>
<p><b>Standard Error:</b> The standard error measures the accuracy or uncertainty of the forecasted values. It quantifies the average
amount by which the forecasted values may deviate from the actual values. A smaller standard error indicates a more reliable forecast.</p>
<p><b>Lower 95% Confidence Interval (CI):</b> The lower 95% confidence interval provides a range within which the actual values are
likely to fall with 95% confidence. It represents the lower bound of the uncertainty range around the forecasted values.</p>
<p><b>Upper 95% Confidence Interval (CI):</b> The upper 95% confidence interval represents the upper bound of the uncertainty range
around the forecasted values. It indicates the upper limit within which the actual values are likely to fall with 95% confidence.</p>
<p>By analyzing these components, analysts can assess the reliability of the forecasts, evaluate the uncertainty associated with the predictions,
and make informed decisions based on the range of potential outcomes. The confidence intervals provide a measure of the forecast accuracy
and can be used to assess the risk and variability in the future values.</p>
""", unsafe_allow_html=True)
# Show table for hw_forecast
table_forecast = hw_forecast.copy()
table_forecast = table_forecast.rename(columns={"forecast_mean": "Forecast",
"forecast_se": "Standard Error",
"lower_ci_0.95": "Lower 95% CI",
"upper_ci_0.95": "Upper 95%"})
table_forecast.index.name = "Date"
table_forecast.index = table_forecast.index.date
# Center the table
st.markdown("<h2 style='font-size: 25px; text-align: left;'>Forecasted values and 95% confidence interval</h2>", unsafe_allow_html=True)
styles = [{'selector': 'th', 'props': [('text-align', 'center')]},
{'selector': 'td', 'props': [('text-align', 'center')]}]
table_html = table_forecast.style.set_table_styles(styles).render()
# st.markdown("<div style='text-align: center;'>{}</div>".format(table_html), unsafe_allow_html=True)
st.markdown("<div style='text-align: center;'><div>{}</div></div>".format(table_html), unsafe_allow_html=True)
st.write("\n")