-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainer.py
339 lines (300 loc) · 11.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# =============================================================================
# Trainer module
# =============================================================================
import model,metric,utils
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import warnings
warnings.filterwarnings('ignore')
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,classification_report
from collections import defaultdict
from textwrap import wrap
from joblib import load, dump
import pickle
from tqdm import tqdm
import transformers
import datetime
import matplotlib.pylab as pylab
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import PCA
from scipy.stats import energy_distance
from fastdist import fastdist
def train(epoch,model):
tr_loss = 0
n_correct = 0
nb_tr_steps = 0
nb_tr_examples = 0
model.train()
# progress bar
train_per_epoch = num_of_batches_per_epoch
kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch,
num_epochs=EPOCHS, width=8,
always_stateful=False)
for idx,data in enumerate(training_loader, 0):
# copy tensors to gpu
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
targets = data['targets'].to(device, dtype = torch.long)
# get output and calculate loss.
outputs = model(ids, mask)
loss = loss_function(outputs, targets)
tr_loss += loss.item()
big_val, big_idx = torch.max(outputs.data, dim=1)
n_correct += acc_cal(big_idx, targets)
nb_tr_steps += 1
nb_tr_examples+=targets.size(0)
optimizer.zero_grad()
loss.backward()
# # When using GPU
optimizer.step()
kbar.update(idx, values=[("train_loss", tr_loss/(idx+1))])
epoch_loss = tr_loss/nb_tr_steps
epoch_accu = (n_correct*100)/nb_tr_examples
# Comment them out for faster training
test_acc,test_loss,predicted_labels,true_labels, predicted_raw= valid(model, testing_loader)
print(" - ")
print("test accuracy:",round(test_acc,2))
print("test loss:",round(test_loss,2))
history['train_acc'].append(epoch_accu)
history['train_loss'].append(epoch_loss)
history['test_acc_while_training'].append(test_acc)
history['test_loss_while_training'].append(test_loss)
# print(f"Training Loss Epoch: {epoch_loss}")
# print(f"Training Accuracy Epoch: {epoch_accu}")
return
# function to predict output.
def valid(model, testing_loader):
predicted_raw = []
predicted_labels = []
true_labels = []
nb_tr_steps = 0
tr_loss =0
nb_tr_examples=0
model.eval()
n_correct = 0; n_wrong = 0; total = 0
with torch.no_grad():
for _, data in enumerate(testing_loader, 0):
# copy tensors to gpu.
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
targets = data['targets'].to(device, dtype = torch.long)
outputs = model(ids, mask).squeeze()
# calculate loss
loss = loss_function(outputs, targets)
tr_loss += loss.item()
big_val, big_idx = torch.max(outputs.data, dim=1)
predicted_raw += outputs
predicted_labels += big_idx
true_labels += targets
n_correct += acc_cal(big_idx, targets)
nb_tr_steps += 1
nb_tr_examples+=targets.size(0)
epoch_loss = tr_loss/nb_tr_steps
epoch_accu = (n_correct*100)/nb_tr_examples
history['val_acc'].append(epoch_accu)
history['val_loss'].append(epoch_loss)
return epoch_accu,epoch_loss,predicted_labels,true_labels,predicted_raw
def test_model(model, testing_loader):
predicted_labels = []
true_labels = []
nb_tr_steps = 0
tr_loss =0
nb_tr_examples=0
model.eval()
n_correct = 0; n_wrong = 0; total = 0
with torch.no_grad():
for _, data in enumerate(testing_loader, 0):
# copy tensors to gpu.
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
targets = data['targets'].to(device, dtype = torch.long)
outputs = model(ids, mask).squeeze()
# calculate loss
loss = loss_function(outputs, targets)
tr_loss += loss.item()
big_val, big_idx = torch.max(outputs.data, dim=1)
torch.max
predicted_labels += big_idx
true_labels += targets
n_correct += acc_cal(big_idx, targets)
nb_tr_steps += 1
nb_tr_examples+=targets.size(0)
epoch_loss = tr_loss/nb_tr_steps
epoch_accu = (n_correct*100)/nb_tr_examples
return epoch_accu,epoch_loss,predicted_labels,true_labels
from torch.utils.tensorboard import SummaryWriter
# from torchvision import datasets, transforms
writer = SummaryWriter()
for n_iter in range(100):
writer.add_scalar('Loss/train', np.random.random(), n_iter)
writer.add_scalar('Loss/test', np.random.random(), n_iter)
writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
for epoch in range(EPOCHS):
train(epoch,baseline_model)
print('\n')
test_acc,test_loss,predicted_labels,true_labels, predicted_raw= valid(baseline_model, testing_loader)
predicted_labels = [i.item() for i in predicted_labels]
true_labels = [i.item() for i in true_labels]
predicted_raw = [i.cpu().detach().numpy() for i in predicted_raw]
accuracy_score(true_labels,predicted_labels)
print(classification_report(true_labels,predicted_labels))
cm = confusion_matrix(true_labels,predicted_labels)
cm.diagonal()/cm.sum(axis=1)
test_df['predicted'] = predicted_labels
test_df['predicted_raw'] = predicted_raw
test_df['wrong'] = 0
for j in range(len(test_df)):
test_df.loc[j,'predict_c_0'] = predicted_raw[j][0]
test_df.loc[j,'predict_c_1'] = predicted_raw[j][1]
if (test_df.loc[j,'labels']!=test_df.loc[j,'predicted']):
test_df.loc[j,'wrong'] = 1
df_embeddings.reset_index(drop=True,inplace=True)
sns.countplot(df_embeddings.wrong)
accuracy_score(df_embeddings.predicted,df_embeddings.labels)
df_embeddings_copy['larget_logit'] = 0
df_embeddings_copy['confidence'] = 0
for j in range(len(df_embeddings_copy)):
df_embeddings_copy.loc[j,'confidence'] = abs(abs(df_embeddings_copy.loc[j, 'predict_c_0']) - abs(df_embeddings_copy.loc[j, 'predict_c_1']))
if df_embeddings_copy.loc[j, 'predict_c_0'] >= 0:
df_embeddings_copy.loc[j,'larget_logit'] = df_embeddings_copy.loc[j, 'predict_c_0']
if df_embeddings_copy.loc[j, 'predict_c_1'] >= 0:
df_embeddings_copy.loc[j,'larget_logit'] = df_embeddings_copy.loc[j, 'predict_c_1']
fig, ax = plt.subplots()
fig.canvas.draw()
ax = sns.distplot([df_embeddings_copy[df_embeddings_copy.wrong == 0].larget_logit_minmax]
,label = 'Correct',color='black',kde=True,bins=16)
ax = sns.distplot([df_embeddings_copy[df_embeddings_copy.wrong == 1].larget_logit_minmax]
,label = 'Wrong',
color='#FF1B1C',bins=8,kde=True)
plt.xlabel('Highest Logit')
labels = [item.get_text() for item in ax.get_yticklabels()]
ax.set_yticklabels(labels)
plt.legend(loc=1)
plt.show()
# https://github.com/talboger/fastdist
def distance_matrix(df_embeddings):
dim = len(df_embeddings) # - 1500
s_ij = np.zeros([dim,dim])
e_ij = np.zeros([dim,dim])
l1norm_ij = np.zeros([dim,dim])
l2norm_ij = np.zeros([dim,dim])
l3norm_ij = np.zeros([dim,dim])
for j in tqdm(range(dim)):
for z in range(j,dim):
c = fastdist.cosine_matrix_to_matrix(df_embeddings.embedding[j], df_embeddings.embedding[z])
return s_ij,e_ij,l1norm_ij,l2norm_ij,l3norm_ij
s_ij,e_ij,l1norm_ij,l2norm_ij,l3norm_ij = distance_matrix(df_embeddings)
mask = np.tril(np.ones_like(s_ij, dtype=bool))
np.fill_diagonal(mask,False)
cmap = sns.diverging_palette(230, 20, as_cmap=True)
s_ij_rank = s_ij.reshape(-1)
s_ij_rank.transpose()
df_similarity_rank = pd.DataFrame(s_ij_rank)
df_similarity_rank = df_similarity_rank.replace(0,np.nan).dropna()
df_similarity_rank.reset_index(drop=True,inplace=True)
df_similarity_rank.describe()
SIM_BASE = df_similarity_rank.sort_values(0).quantile(0.2).values
df_similarity = pd.DataFrame(s_ij)
df_similarity = df_similarity.replace(0,np.nan)
df_similarity.describe()
df_similarity
df_density = df_similarity
for j in tqdm(range(len(df_density))):
for z in range(j,len(df_density.loc[j])):
df_density.loc[j,z] = np.sign(df_density.loc[j,z] - SIM_BASE)
df_embeddings['density'] = 0
df_embeddings['average_sim_all_peers'] = 0
for j in range(len(df_density)):
df_embeddings.loc[j,'density'] = array_density[j].sum()
df_embeddings.loc[j,'average_sim_all_peers'] = array_similarity[j].mean()
df_embeddings_sorted = df_embeddings.sort_values(['density', 'average_sim_all_peers'],ascending=[False,False])
df_embeddings_sorted.reset_index(drop=True,inplace=True)
# 0,1 > 1 | 2,3,4,5 > 2
# imdb@
# For Twitter
# cp_list = [[],[],[],[],[],[],[],[]]
# For IMDB
cp_list = [[],[]]
for x in range(len(news_groups)):
proto_list = []
begin = 0
z = 0
p_num = 0
proto_list.append(df_embeddings_sorted.loc[0,'sample_id'])
df = df_embeddings_sorted[df_embeddings_sorted.labels == x]
df.reset_index(drop=True,inplace=True)
for j in range(1,len(df)):
if (z<=2**(p_num+1)):
z = z + 1
if (z == 2**(p_num+1)):
z = 0
end = j
p = df.loc[begin,'sample_id']
for b in range(begin, end):
i_sel = df.loc[b,'sample_id']
if (np.mean(array_similarity[i_sel][proto_list]) < np.mean(array_similarity[p][proto_list])):
p = i_sel
proto_list.append(p)
begin = j
p_num = p_num + 1
cp_list[x] = proto_list[1:]
print(cp_list)
df_embeddings_sorted = df_embeddings.sort_values(['density', 'average_sim_all_peers'],ascending=[True,False])
df_embeddings_sorted.reset_index(drop=True,inplace=True)
ap_list = [[],[]]
for x in range(len(news_groups)):
proto_list = []
begin = 0
z = 0
p_num = 0
df = df_embeddings_sorted[df_embeddings_sorted.labels == x]
df.reset_index(drop=True,inplace=True)
for j in range(1,len(df)):
if (z<=2**(p_num+1)):
z = z + 1
if (z == 2**(p_num+1)):
z = 0
end = j
p = df.loc[begin,'sample_id']
for b in range(begin, end):
i_sel = df.loc[b,'sample_id']
if (np.mean(array_similarity[i_sel][proto_list]) < np.mean(array_similarity[p][proto_list])):
p = i_sel
proto_list.append(p)
begin = j
p_num = p_num + 1
ap_list[x] = proto_list
print(ap_list)
df_embeddings['class_prototype'] = 0
for x in range(len(cp_list)):
for j in cp_list[x]:
df_embeddings.loc[j,'class_prototype'] = 1
df_embeddings['anomaly_prototype'] = 0
for x in range(len(ap_list)):
for j in ap_list[x]:
df_embeddings.loc[j,'anomaly_prototype'] = 1
df_embeddings['larget_logit'] = 0
df_embeddings['confidence'] = 0
for j in range(len(df_embeddings)):
df_embeddings.loc[j,'confidence'] = abs(abs(df_embeddings.loc[j, 'predict_c_0']) - abs(df_embeddings.loc[j, 'predict_c_1']))
if df_embeddings.loc[j, 'predict_c_0'] >= 0:
df_embeddings.loc[j,'larget_logit'] = df_embeddings.loc[j, 'predict_c_0']
if df_embeddings.loc[j, 'predict_c_1'] >= 0:
df_embeddings.loc[j,'larget_logit'] = df_embeddings.loc[j, 'predict_c_1']
df = df_embeddings[df_embeddings.average_sim_all_peers!=0]
df.reset_index(drop=True,inplace=True)
sns.scatterplot(df.density,df.average_sim_all_peers,s=80,label='Embeddings',c=df.confidence, cmap='gray')
plt.title('Scatter plot of embeddings density for class'+' 0')
plt.xlabel('Proximity')
plt.ylabel('Similarity')
plt.legend()
plt.show()