-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeep_learning_experiments.py
247 lines (209 loc) · 9.3 KB
/
deep_learning_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Runs experiments and hyperparameter tuning
"""
from comet_ml import Experiment, Optimizer # necessary for comet to function
import argparse
import configparser
import torch
from globals import ROOT_DIR
from experiment_builder import ExperimentBuilder
from data_providers import TextDataProvider, ImbalancedDatasetSampler, DataProvider
import os
from models.cnn import word_cnn
from models.densenet import densenet
from models.lstm import lstm
from models.multilayer_perceptron import multi_layer_perceptron
import time
import numpy as np
import sys
# PARAMS
VERBOSE = True
config = configparser.ConfigParser()
config.read('config.ini')
def get_args():
"""
To parse user parameters
:return:
"""
parser = argparse.ArgumentParser(description='CNN Hate Speech Detection Experiment.')
parser.add_argument('--seed', type=int, default=28)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--model', type=str, default='CNN')
parser.add_argument('--name', type=str, default='tuning')
parser.add_argument('--embedding_key', type=str, default='bert')
parser.add_argument('--embedding_level', type=str, default='word')
parser.add_argument('--batch_size', type=int, default=2048)
parser.add_argument('--dropout', type=float, default=.5)
parser.add_argument('--experiment_flag', type=int, default=4)
parser.add_argument('--num_layers', type=int, default=3)
if VERBOSE:
arg_str = [(str(key), str(value)) for (key, value) in vars(parser.parse_args()).items()]
print(arg_str)
return parser.parse_args()
def extract_data(embedding_key, embedding_level, seed, experiment_flag):
path_data = os.path.join(ROOT_DIR, config['DEFAULT']['PATH_DATA'])
path_labels = os.path.join(ROOT_DIR, config['DEFAULT']['PATH_LABELS'])
data_provider = TextDataProvider(path_data, path_labels, experiment_flag, embedding_key, seed)
if embedding_level == 'word':
return data_provider, data_provider.generate_word_level_embeddings(seed)
elif embedding_level == 'tdidf':
return data_provider, data_provider.generate_tdidf_embeddings(seed)
def wrap_data(batch_size, seed, data_local):
train_set = DataProvider(inputs=data_local['x_train'], targets=data_local['y_train'], seed=seed)
train_data_local = torch.utils.data.DataLoader(train_set,
batch_size=batch_size,
num_workers=2,
sampler=ImbalancedDatasetSampler(train_set))
valid_set = DataProvider(inputs=data_local['x_valid'], targets=data_local['y_valid'], seed=seed)
valid_data_local = torch.utils.data.DataLoader(valid_set,
batch_size=batch_size,
num_workers=2,
shuffle=False)
test_set = DataProvider(inputs=data_local['x_test'], targets=data_local['y_test'], seed=seed)
test_data_local = torch.utils.data.DataLoader(test_set,
batch_size=batch_size,
num_workers=2,
shuffle=False)
return train_data_local, valid_data_local, test_data_local
def fetch_model(model_local, embedding_level, dropout, num_layers, num_filters):
if model_local == 'MLP':
return multi_layer_perceptron()
if model_local == 'CNN':
return word_cnn(dropout=dropout, num_layers=num_layers, num_filters=num_filters)
if model_local == 'DENSENET':
return densenet()
if model_local == 'LSTM':
return lstm()
else:
raise ValueError("Model key not found {}".format(embedding_level))
def generate_device(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if torch.cuda.is_available(): # checks whether a cuda gpu is available and whether the gpu flag is True
device_local = torch.cuda.current_device()
print("Using {} GPU(s)".format(torch.cuda.device_count()))
else:
print("Using CPU")
device_local = torch.device('cpu') # sets the device to be CPU
return device_local
def hyperparameter_tuning():
args = {
'seed': 28,
'embedding_key': 'bert',
'batch_size': 2048,
'experiment_flag': 4,
'embedding_level': 'word',
'dropout': .5,
'num_epochs': 100,
'model': 'CNN',
'num_layers': 3,
'name': 'tuning',
'num_filters': 32,
'learning_rate': .1,
}
device = generate_device(args['seed'])
data_provider, (data, data_map) = extract_data(args['embedding_key'], args['embedding_level'], args['seed'], args['experiment_flag'])
optimizer = Optimizer(sys.argv[1], api_key=config['DEFAULT']['COMET_API_KEY'],
project_name="cnn-phase-4-bert-word")
print("Wrapping data")
train_set, valid_set, test_set = wrap_data(args['batch_size'], args['seed'], data)
for comet_experiment in optimizer.get_experiments():
args["dropout"] = comet_experiment.get_parameter("dropout")
args["num_layers"] = comet_experiment.get_parameter("num_layers")
args["num_filters"] = comet_experiment.get_parameter("num_filters")
args["learning_rate"] = comet_experiment.get_parameter("learning_rate")
model = fetch_model(model_local=args['model'],
embedding_level=args['embedding_level'],
dropout=args['dropout'],
num_layers=args['num_layers'],
num_filters=args['num_filters']
)
# OUTPUT
folder_title = '_'.join([args['model'], args['name'], args['embedding_key'], args['embedding_level']])
print("=== Writing to folder {} ===".format(folder_title))
results_dir = os.path.join(ROOT_DIR, 'results/{}').format(folder_title)
start = time.time()
hyper_params = {
'seed': args['seed'],
'experiment_name': folder_title,
'results_dir': results_dir,
'num_epochs': args['num_epochs'],
'batch_size': args['batch_size'],
'dropout': args['dropout'],
'learning_rate': args['learning_rate'],
}
experiment = ExperimentBuilder(
network_model=model,
device=device,
hyper_params=hyper_params,
train_data=train_set,
valid_data=valid_set,
test_data=test_set,
data_map=data_map,
experiment_flag=args['experiment_flag'],
data_provider=data_provider,
experiment=Experiment(project_name='experiment_{}'.format(hyper_params['seed'])),
)
_, _ = experiment.run_experiment() # run experiment and return experiment metrics
print("Total time (min): {:0.2f}".format(round((time.time() - start) / float(60), 4)))
if __name__ == "__main__":
args = get_args()
args = {
'seed': args.seed,
'embedding_key': 'bert',
'batch_size': args.batch_size,
'experiment_flag': args.experiment_flag,
'embedding_level': 'word',
'dropout': args.dropout,
'num_epochs': args.num_epochs,
'model': 'CNN',
'num_layers': args.num_layers,
'name': args.name,
'num_filters': 32,
'learning_rate': .1,
}
device = generate_device(args['seed'])
data_provider, (data, data_map) = extract_data(args['embedding_key'], args['embedding_level'], args['seed'], args['experiment_flag'])
print("Wrapping data")
train_set, valid_set, test_set = wrap_data(args['batch_size'], args['seed'], data)
# TUNED VALUES
args["dropout"] = 0.8877463061848953
args["num_layers"] = 1
args["num_filters"] = 47
args["learning_rate"] = 0.019676483888899934
model = fetch_model(model_local=args['model'],
embedding_level=args['embedding_level'],
dropout=args['dropout'],
num_layers=args['num_layers'],
num_filters=args['num_filters']
)
# OUTPUT
folder_title = '_'.join([args['model'], args['name'], args['embedding_key'], args['embedding_level']])
print("=== Writing to folder {} ===".format(folder_title))
results_dir = os.path.join(ROOT_DIR, 'results/{}').format(folder_title)
start = time.time()
hyper_params = {
'seed': args['seed'],
'experiment_name': folder_title,
'results_dir': results_dir,
'num_epochs': args['num_epochs'],
'batch_size': args['batch_size'],
'dropout': args['dropout'],
'learning_rate': args['learning_rate'],
}
experiment = ExperimentBuilder(
network_model=model,
device=device,
hyper_params=hyper_params,
train_data=train_set,
valid_data=valid_set,
test_data=test_set,
data_map=data_map,
experiment_flag=args['experiment_flag'],
data_provider=data_provider,
experiment= Experiment(project_name='experiment_{}'.format(hyper_params['seed'])),
)
experiment_metrics, test_metrics = experiment.run_experiment() # run experiment and return experiment metrics
print("Total time (min): {:0.2f}".format(round((time.time() - start) / float(60), 4)))