-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_providers.py
277 lines (233 loc) · 12.1 KB
/
data_providers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""
Provides feature embeddings of type Bert, Twitter, and TFIDF across
experiment types
"""
from sklearn.feature_extraction.text import TfidfVectorizer
from gensim.models import word2vec, KeyedVectors
import torch.utils.data as data
from utils import *
import torch
import torch.utils.data
import pandas as pd
from bert_embedding import BertEmbedding
GOOGLE_EMBED_DIM = 300
TWITTER_EMBED_DIM = 400
TWEET_SENTENCE_SIZE = 17 # 16 is average tweet token length
TWEET_WORD_SIZE = 20 # selected by histogram of tweet counts
FASTTEXT_EMBED_DIM = 300
EMBED_DIM = 200
NUM_CLASSES = 4
BERT_EMBEDDING_NUM = 11
TDIDF_MAX_FEATURES = 500
BERT_EMBED_DIM = 768
class DataProvider(data.Dataset):
"""Generic data provider."""
def __init__(self, inputs, targets, seed):
self.inputs = list(inputs)
self.targets = targets
self.rng = np.random.RandomState(seed)
def __len__(self):
return len(self.inputs)
def __getitem__(self, index):
return self.inputs[index], self.targets[index]
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
"""Samples elements randomly from a given list of indices for imbalanced dataset
Arguments:
indices (list, optional): a list of indices
num_samples (int, optional): number of samples to draw
"""
def __init__(self, dataset, indices=None, num_samples=None):
# if indices is not provided,
# all elements in the dataset will be considered
self.indices = list(range(len(dataset))) \
if indices is None else indices
# if num_samples is not provided,
# draw `len(indices)` samples in each iteration
self.num_samples = len(self.indices) \
if num_samples is None else num_samples
# distribution of classes in the dataset
label_to_count = {}
for idx in self.indices:
inputs, label = dataset[idx][0], dataset[idx][1]
if label in label_to_count:
label_to_count[label] += 1
else:
label_to_count[label] = 1
# weight for each sample
weights = [1.0 / label_to_count[dataset[idx][1]] for idx in self.indices]
self.weights = torch.DoubleTensor(weights)
def __iter__(self):
return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))
def __len__(self):
return self.num_samples
class TextDataProvider(object):
def __init__(self, path_data, path_labels, experiment_flag, embedding_key, seed):
self.experiment_flag = experiment_flag
# create ouputs with tweet data
label_data = pd.read_csv(path_labels, header='infer', index_col=0, squeeze=True).to_dict()
data = np.load(os.path.join(ROOT_DIR, path_data), allow_pickle=True)
data = data[()]
self.outputs, self.labels = extract_tweets(label_data, data, self.experiment_flag, seed)
self.embedding_key = embedding_key
# populate outputs with specific embeddings
if embedding_key == 'twitter':
self.embed_dim = TWITTER_EMBED_DIM
filename = os.path.join(ROOT_DIR, 'data/word2vec_twitter_model/word2vec_twitter_model.bin')
self.word_vectors = KeyedVectors.load_word2vec_format(filename, binary=True, unicode_errors='ignore')
self.generate_twitter_embeddings()
elif embedding_key == 'bert':
self.embed_dim = BERT_EMBED_DIM
self.bert_embeddings = self.generate_bert_embedding_dict()
self.generate_bert_embeddings()
self.bert_embedding_generator = BertEmbedding()
elif embedding_key == 'tdidf':
self.embed_dim = TDIDF_MAX_FEATURES
self.vectorizer = None
@staticmethod
def generate_bert_embedding_dict():
embeddings = {}
for i in range(BERT_EMBEDDING_NUM):
results = np.load(os.path.join(ROOT_DIR, 'data/bert_embeddings_{}.npz'.format(i)), allow_pickle=True)
print("Downloading Bert, Processed {} / {}".format(i+1, BERT_EMBEDDING_NUM))
results = results['a']
results = results[()]
embeddings = {**results, **embeddings}
return embeddings
@staticmethod
def process_tweet(tweet, embed_dim, word_vectors):
embedded_tweet = []
# trim if too large
if len(tweet) >= TWEET_SENTENCE_SIZE:
tweet = tweet[:TWEET_SENTENCE_SIZE]
# convert all into word embeddings
for word in tweet:
embedding = generate_random_embedding(embed_dim) if word not in word_vectors else word_vectors[word]
embedded_tweet.append(embedding)
# pad if too short
if len(tweet) < TWEET_SENTENCE_SIZE:
diff = TWEET_SENTENCE_SIZE - len(tweet)
embedded_tweet += [generate_random_embedding(embed_dim) for _ in range(diff)]
return embedded_tweet
def embed_words(self, words, scores=None):
embedded_words = []
if self.embedding_key == 'twitter':
# convert all into word embeddings
for word in words:
embedding = generate_random_embedding(self.embed_dim) if word not in self.word_vectors else self.word_vectors[word]
embedded_words.append(embedding)
elif self.embedding_key == 'bert':
items = self.bert_embedding_generator(words)
for item in items:
try:
embedded_words.append(item[1][0])
except:
embedded_words.append(np.zeros((self.embed_dim,)))
elif self.embedding_key == 'tdidf':
embedded_words = np.array(self.vectorizer.transform(words).todense())
if scores:
embedded_words = self.add_scores(embedded_words, 10, scores)
embedded_words = np.array(embedded_words)
return embedded_words
@staticmethod
def add_scores(embeds, word_count, scores):
features = np.array([scores for _ in range(word_count)]) # adding 1
embed = np.concatenate((embeds, features), -1)
return embed
def generate_twitter_embeddings(self):
if self.experiment_flag == 4:
user_topic_words = np.load(ROOT_DIR, 'data/user_lda_scores_final.npz')
for j, (key, output) in enumerate(self.outputs.items()):
# process first tweet
embedded_tweet = self.process_tweet(output['tokens'], self.embed_dim, self.word_vectors)
assert len(embedded_tweet) == TWEET_SENTENCE_SIZE
self.outputs[key]['embedded_tweet'] = embedded_tweet
if self.experiment_flag == 2:
embedded_context_tweet = []
if output['context_tweet'] is None:
for _ in range(TWEET_SENTENCE_SIZE):
blank_embedding = np.zeros(self.embed_dim,)
embedded_context_tweet.append(blank_embedding)
else:
context_embedding = self.process_tweet(output['context_tokens'], self.embed_dim, self.word_vectors)
for j in range(TWEET_SENTENCE_SIZE):
embedded_context_tweet.append(context_embedding[j])
assert len(embedded_context_tweet) == TWEET_SENTENCE_SIZE
self.outputs[key]['embedded_context_tweet'] = embedded_context_tweet
elif self.experiment_flag == 4:
perplexity, coherence, topic_words = user_topic_words[self.outputs[key]['user_id']]
self.outputs[key]['embedded_topic_words'] = self.embed_words(topic_words, [perplexity, coherence])
def generate_tdidf_embeddings(self, seed):
x_train, y_train, x_valid, y_valid, x_test, y_test = split_data(list(self.outputs.keys()), self.labels, seed)
self.vectorizer = TfidfVectorizer(use_idf=True, max_features=TDIDF_MAX_FEATURES)
if self.experiment_flag == 4:
user_topic_words = np.load(ROOT_DIR, 'data/user_lda_scores_final.npz')
for i, _set in enumerate([x_train, x_valid, x_test]):
if i == 0:
self.vectorizer.fit([self.outputs[key]['tweet'] for key in _set])
# all embeddings for the set
embedded_tweets = self.vectorizer.transform([self.outputs[key]['tweet'] for key in _set]).todense()
if self.experiment_flag == 2 or self.experiment_flag == 3:
embedded_context_tweets = self.vectorizer.transform(
[self.outputs[key]['context_tweet'] if self.outputs[key]['context_tweet'] is not None else '' for key in
_set]).todense()
if self.experiment_flag == 4:
embedded_topics = self.vectorizer.transform(
[' '.join(user_topic_words[self.outputs[key]['user_id']][2]) for key in _set]).todense()
perplexity_mean = np.mean([user_topic_words[self.outputs[key]['user_id']][0] for key in _set])
coherence_mean = np.mean([user_topic_words[self.outputs[key]['user_id']][1] for key in _set])
features = np.array([[perplexity_mean, coherence_mean] for _ in range(len(_set))])
embedded_topics = np.concatenate((np.array(embedded_topics), features), -1)
print(embedded_topics.shape)
for j, key in enumerate(_set):
self.outputs[key]['embedded_tweet'] = np.array(embedded_tweets[j])
if self.experiment_flag == 2 or self.experiment_flag == 3:
self.outputs[key]['embedded_context_tweet'] = np.array(embedded_context_tweets[j])
if self.experiment_flag == 4:
self.outputs[key]['embedded_topic_words'] = np.array(embedded_topics[j])
return {'x_train': x_train,
'y_train': y_train,
'x_valid': x_valid,
'y_valid': y_valid,
'x_test': x_test,
'y_test': y_test}, self.outputs
def generate_bert_embeddings(self):
"""
:param embeddings: preprocessed bert word embeddings
:param data: has all fields, separate fn from gen_word_embeddings
:return:
"""
for key, output in self.outputs.items():
self.outputs[key]['embedded_tweet'] = self.bert_embeddings[int(output['id'])]
if self.experiment_flag == 2 or self.experiment_flag == 4:
bert_embedded_topic_words = aggregate(0, 65, 'bert/bert_topic_words')
# finding bert embedding for reply tweet
for i, (key, output) in enumerate(self.outputs.items()):
if self.experiment_flag == 2:
tweet_embed = self.bert_embeddings[int(output['id'])]
self.outputs[key]['embedded_tweet'] = tweet_embed
reply_status_id = int(output['in_reply_to_status_id'])
blank_embed = []
if reply_status_id == -1 or reply_status_id not in self.bert_embeddings:
for i in range(17):
blank_embedding = np.zeros(BERT_EMBED_DIM, )
blank_embed.append(blank_embedding)
embedded_context_tweet = blank_embed
else:
embedded_context_tweet = self.bert_embeddings[reply_status_id]
self.outputs[key]['embedded_context_tweet'] = embedded_context_tweet
if self.experiment_flag == 4:
if int(output['id']) in bert_embedded_topic_words:
embedded_topic_words = bert_embedded_topic_words[int(output['id'])]
self.outputs[key]['embedded_topic_words'] = embedded_topic_words
else:
self.outputs[key]['embedded_topic_words'] = np.zeros((10, BERT_EMBED_DIM + 2))
def generate_word_level_embeddings(self, seed):
x_train, y_train, x_valid, y_valid, x_test, y_test = split_data(list(self.outputs.keys()), self.labels, seed)
print("Word embeddings generated")
return {'x_train': x_train,
'y_train': y_train,
'x_valid': x_valid,
'y_valid': y_valid,
'x_test': x_test,
'y_test': y_test
}, self.outputs