-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.class_implementation_cf_recommender.txt
62 lines (49 loc) · 1.47 KB
/
.class_implementation_cf_recommender.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
[Reference: See .index.txt for complete file listing]
Collaborative Filtering Recommender Implementation Instructions
=========================================================
Class: CFRecommender
-------------------
Purpose:
Implement collaborative filtering for clause recommendations.
Implementation Details:
1. Matrix Factorization
---------------------
- User-clause matrix
- Implicit feedback handling
- Regularization techniques
2. Training Process
-----------------
- Alternating least squares
- Hyperparameter optimization
- Cold start handling
3. Recommendation Generation
--------------------------
- Similarity computation
- Ranking algorithms
- Diversity promotion
Code Structure:
```python
class CFRecommender:
def __init__(self, num_factors=100, regularization=0.01):
self.num_factors = num_factors
self.regularization = regularization
self.user_factors = None
self.item_factors = None
def build_user_matrix(self, interactions):
"""Build user-clause interaction matrix"""
pass
def train_collaborative_filter(self, train_data):
"""Train CF model"""
pass
def get_recommendations(self, user_id, n=10):
"""Get clause recommendations"""
pass
def update_preferences(self, user_id, clause_id, rating):
"""Update user preferences"""
pass
```
Key Considerations:
- Scalability
- Cold start problems
- Update frequency
- Performance metrics