-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
107 lines (77 loc) · 2.81 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import base64
import requests
import constants
from PIL import Image
import streamlit as st
API_URL = "https://arpy8-plant-detection-api.hf.space/predict"
# def predict_class(image_path):
# original_image = Image.open(image_path)
# preprocessed_image = original_image.resize((256, 256))
# preprocessed_image = np.array(preprocessed_image) / 255.0
# preds = model.predict(np.expand_dims(preprocessed_image, axis = 0))
# labels = ['Healthy', 'Powdery', 'Rust']
# preds_class = np.argmax(preds)
# preds_label = labels[preds_class]
# return preds_label, round(preds[0][preds_class], 2)
def predict_class_from_api(image_path):
files = {'file': image_path}
headers = {'accept': 'application/json'}
try:
response = requests.post(API_URL, headers=headers, files=files)
response.raise_for_status()
result = response.json()
return result
except requests.exceptions.HTTPError as err:
print(err)
return "Error", 0.0
################## STREAMLIT APP ##################
@st.cache_data()
def get_base64_of_bin_file(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_png_as_page_bg(png_file):
bin_str = get_base64_of_bin_file(png_file)
page_bg_img = '''
<style>
body {
background-image: url("data:image/png;base64,%s") !important;
background-size: cover !important;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
return
set_png_as_page_bg('assets/bg.webp')
st.write("<h1>Plant Disease Detection using CNN</h1>", unsafe_allow_html=True)
with st.sidebar:
st.image("assets/logo.png")
uploaded_file = st.file_uploader("Upload an image", type = ['png', 'jpg', 'jpeg'])
st.info("""
# About
This is a web app to predict the disease in a plant using Convolutional Neural Network (CNN).
# Contact
For inquiries, you can mail us [here](mailto:[email protected]).
""")
home_page = st.empty()
home_page.write(constants.FRONT_PAGE, unsafe_allow_html=True)
display_image = st.empty()
classifying_text = st.empty()
button = st.empty()
if uploaded_file is not None:
home_page.empty()
display_image.image(uploaded_file, width=450)
predict_button = button.button("Predict", use_container_width=True)
if predict_button and uploaded_file is not None:
classifying_text.empty()
button.empty()
with st.spinner("Predicting..."):
label = predict_class_from_api(uploaded_file)
st.toast("Prediction Complete!")
st.info(f"""
##### Predicted Class:
{label}
##### Description:
{constants.DISEASE_DESCRIPTION[label]}
""")
classifying_text.empty()