Skip to content

Commit af4f7fc

Browse files
committed
Added the forked version of the gist by @gbuesing.
1 parent f998112 commit af4f7fc

File tree

1 file changed

+139
-0
lines changed

1 file changed

+139
-0
lines changed

inbox.md

+139
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,139 @@
1+
Resources for Machine Learning in Ruby
2+
===
3+
4+
Gems
5+
---
6+
7+
* [liblinear-ruby](https://github.com/kei500/liblinear-ruby): Ruby interface to LIBLINEAR using SWIG
8+
9+
* [classifier-reborn](https://github.com/jekyll/classifier-reborn): Bayesian and LSI classification
10+
dependencies: GSL
11+
12+
* [categorize](https://github.com/helioid/categorize): Categorize is a text categorization library written in Ruby. It prioritizes performance over accuracy and is built to run online in dynamic web services
13+
14+
* [decisiontree](https://github.com/igrigorik/decisiontree): ID3-based implementation of the ML Decision Tree algorithm
15+
dependencies: Graphviz
16+
17+
* [similarity](https://github.com/bbcrd/Similarity):
18+
Calculate similarity between documents using TF-IDF weights
19+
dependencies: GSL
20+
21+
* [rb-libsvm](https://github.com/febeling/rb-libsvm):
22+
Ruby language bindings for LIBSVM
23+
dependencies: None ([LIBSVM](http://www.csie.ntu.edu.tw/~cjlin/libsvm/) is bundled with the project)
24+
25+
* [ruby-fann](https://github.com/tangledpath/ruby-fann):
26+
Ruby library for interfacing with FANN (Fast Artificial Neural Network)
27+
dependencies: None ([FANN](http://leenissen.dk/fann/wp/) is bundled with the project)
28+
29+
* [tlearn-rb](https://github.com/josephwilk/tlearn-rb):
30+
Recurrent Neural Network library for Ruby
31+
32+
* [kmeans-clusterer](https://github.com/gbuesing/kmeans-clusterer):
33+
k-means clustering in Ruby
34+
35+
* [k_means](https://github.com/reddavis/K-Means):
36+
Attempting to build a fast, memory efficient K-Means program
37+
38+
* [knn](https://github.com/reddavis/knn):
39+
Simple K Nearest Neighbour Algorithm
40+
41+
* [distance_measures](https://github.com/reddavis/Distance-Measures):
42+
A bunch of distance measures that extend Array
43+
44+
* [fast-stemmer](https://github.com/romanbsd/fast-stemmer):
45+
Fast Porter stemmer based on a C version of the algorithm
46+
47+
* [statsample](https://github.com/clbustos/statsample):
48+
A suite for basic and advanced statistics on Ruby
49+
dependencies: GSL
50+
51+
* [statistics2](https://github.com/abscondment/statistics2):
52+
Provides normal, Chi-square, t- and F- probability distributions for Ruby
53+
54+
* [ruby-graphviz](https://github.com/glejeune/Ruby-Graphviz)
55+
dependencies: Graphviz
56+
57+
* [gnuplot](https://github.com/rdp/ruby_gnuplot/tree/master)
58+
dependencies: Gnuplot
59+
60+
* [rb-gsl](https://github.com/blackwinter/rb-gsl):
61+
Ruby interface to the GNU Scientific Library
62+
dependencies: GSL
63+
64+
* [ruby-opencv](https://github.com/ruby-opencv/ruby-opencv/):
65+
OpenCV wrapper for Ruby
66+
dependencies: OpenCV
67+
68+
* [ai4r](https://github.com/SergioFierens/ai4r): Artificial Intelligence for Ruby - A Ruby playground for AI researchers
69+
70+
* [algorithms](https://github.com/kanwei/algorithms): Ruby algorithms and data structures. C extensions
71+
72+
* [phashion](https://github.com/westonplatter/phashion): Ruby wrapper around pHash, the perceptual hash library for detecting duplicate multimedia files
73+
dependencies: ImageMagick, libjpeg
74+
75+
* [narray](https://github.com/masa16/narray): Ruby/NArray : N-dimensional Numerical Array for Ruby
76+
77+
* [kdtree](https://github.com/gurgeous/kdtree) a blazingly fast, native, 2d kdtree
78+
79+
* [rinruby](https://github.com/clbustos/rinruby): integrates the R interpreter in Ruby, making R's statistical routines and graphics available within Ruby
80+
dependencies: R
81+
82+
* [octave-ruby](https://github.com/daikini/octave-ruby) A Ruby interface to the Octave interpreted language
83+
dependencies: Octave
84+
85+
* [flann](https://github.com/mariusmuja/flann): Fast Library for Approximate Nearest Neighbors
86+
dependencies: flann
87+
88+
* [NMatrix](https://github.com/sciruby/nmatrix): Dense and sparse linear algebra library for Ruby via [SciRuby](http://sciruby.com/)
89+
90+
* [Cerebrum](https://github.com/irfansharif/cerebrum): Artificial Neural Networks in Ruby
91+
92+
* [PCA](https://github.com/gbuesing/pca): Principal component analysis (PCA) in Ruby
93+
94+
* [neural-net-ruby](https://github.com/gbuesing/neural-net-ruby): A neural network, written in Ruby
95+
96+
97+
98+
Base dependencies
99+
---
100+
101+
* [GSL (GNU Scientific Library)](http://www.gnu.org/software/gsl/)
102+
```brew install gsl```
103+
104+
* [OpenCV](http://opencv.org/)
105+
```brew tap homebrew/science && brew install opencv```
106+
107+
* [Graphviz](http://www.graphviz.org/)
108+
```brew install graphviz```
109+
110+
* [Gnuplot](http://www.gnuplot.info/)
111+
```brew install gnuplot --with-x11```
112+
113+
* [X11/XQuartz](http://xquartz.macosforge.org/landing/)
114+
115+
* [ImageMagick](http://www.imagemagick.org/) && libjpeg
116+
```brew install imagemagick && brew install libjpeg```
117+
118+
* [R](http://www.r-project.org/)
119+
```brew tap homebrew/science && brew install r```
120+
121+
* [Octave](https://www.gnu.org/software/octave/)
122+
```brew tap homebrew/science && brew install octave --without-docs```
123+
124+
Heroku buildpacks
125+
---
126+
127+
* [GSL and Ruby buildpack](https://github.com/tomwolfe/heroku-buildpack-gsl-ruby)
128+
* [OpenCV and Ruby buildpack](https://github.com/lilibethdlc/heroku-buildpack-ruby-opencv)
129+
* [ImageMagick buildpack](https://github.com/mcollina/heroku-buildpack-imagemagick)
130+
131+
132+
Other resources
133+
---
134+
135+
* [scikit-learn algorithm cheatsheet](http://scikit-learn.org/stable/tutorial/machine_learning_map/)
136+
* [Thoughtful Machine Learning: A Test-Driven Approach](http://www.amazon.com/Thoughtful-Machine-Learning-Test-Driven-Approach/dp/1449374069)
137+
* [Support Vector Machines (SVM) in Ruby](https://www.igvita.com/2008/01/07/support-vector-machines-svm-in-ruby/)
138+
* [Recurrent Neural Networks in Ruby](http://blog.josephwilk.net/ruby/recurrent-neural-networks-in-ruby.html)
139+
* [Five machine learning techniques that you can use in your Ruby apps today](https://www.youtube.com/watch?v=crziu7dk6Vw) [slides](https://speakerdeck.com/stympy/machine-learning-techniques)

0 commit comments

Comments
 (0)