-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestingTashdid.py
449 lines (361 loc) · 17.9 KB
/
TestingTashdid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from __future__ import print_function
import codecs
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.layers.recurrent import GRU
import numpy as np
import re
from sklearn.metrics import confusion_matrix
from datetime import datetime
from keras.layers.wrappers import Bidirectional
import os.path
# ########################################Constants###########################################################
'''
Experiment Configuration:
'''
EXPERIMENT_CONFIGURATION = '1_Bidirectional_without_Dropout_optimizer_rmsprop'
maxlen = 65
maxlen_after = 10
SAKEN_CHAR = 'ْ'
FATHE_TASHDID = 'َّ'
KASRE_TASHDID = 'ِّ'
ZAMME_TASHDID = 'ُّ'
TANVINE_FATHE_TASHDID = 'ًّ'
TANVINE_KASREH_TASHDID = 'ٍّ'
TANVINE_ZAMME_TASHDID = 'ٌّ'
TASHDID_FATHE = 'َّ'
TASHDID_KASRE = 'ِّ'
TASHDID_ZAMME = 'ُّ'
TASHDID_TANVINE_FATHE = 'ًّ'
TASHDID_TANVINE_KASRE = 'ٍّ'
TASHDID_TANVINE_ZAMME = 'ٌّ'
TASHDID = 'ّ'
diacritics_mappings = {TASHDID_FATHE: '@', TASHDID_KASRE: '#', TASHDID_ZAMME: '$',
TASHDID_TANVINE_FATHE: '&', TASHDID_TANVINE_KASRE: 'α', TASHDID_TANVINE_ZAMME: 'β'}
diacritics = set(['ّ', 'ْ', 'ٌ', 'ٍ', 'ً', 'ُ', 'ِ', 'َ', '@', '#', '$', '&', 'α', 'β'])
SHAMSI_CHARS = set(['ت', 'ث','د','ذ','ر','ز','س','ش','ص','ض','ط','ظ','ل','ن'])
# ################################################Preparing Training and Testing Data###############################
# Original Text
original_text = ''
if os.path.exists('original_text.txt'):
with codecs.open('original_text.txt', encoding='utf-8-sig') as original_text_file:
original_text = original_text_file.read()
else:
with codecs.open('Arabic_Training_Set_Revised1.txt', encoding='utf-8-sig') as myfile:
text = myfile.read()
original_text = text.strip()
original_text = re.sub("[0-9a-zA-Z@#$&αβ()\[\]{}~*;,?\"\-_]", "", original_text)
original_text = original_text.replace('!', '')
original_text = original_text.replace(':', '')
original_text = original_text.replace(SAKEN_CHAR + SAKEN_CHAR, SAKEN_CHAR) # Remove excessive SAAKENS
original_text = original_text.replace('ََ', 'َ')
original_text = original_text.replace('ُُ', 'ُ')
original_text = original_text.replace('ِِ', 'ِ')
original_text = original_text.replace(FATHE_TASHDID + 'َ', FATHE_TASHDID)
original_text = original_text.replace(KASRE_TASHDID + 'ِ', KASRE_TASHDID)
original_text = original_text.replace(ZAMME_TASHDID + 'ُ', ZAMME_TASHDID)
# Added For Testing Tashdid
for d in diacritics:
if d != TASHDID:
original_text = original_text.replace(d, '')
with codecs.open('original_text.txt', encoding='utf-8', mode='w+') as f:
f.write(original_text)
# Added For Testing Tashdid
diacritics = set([TASHDID, SAKEN_CHAR])
print('corpus length:', len(original_text))
# print('text:', repr(text))
'''
create two sets of data: training: 75% of data and testing: 25% of data
'''
original_text = original_text#[0:10000]
original_text_length = len(original_text)
# Refined Text
refined_text = ''
training_data = ''
testing_data = ''
refined_testing_data = ''
if os.path.exists('refined_text.txt'):
with codecs.open('refined_text.txt', encoding='utf-8-sig') as refined_text_file:
refined_text = refined_text_file.read()
else:
training_data = original_text[: int(0.75 * original_text_length)].strip()
# make sure training and testing data do not start with diacritics
for d in diacritics:
testing_data = testing_data.lstrip(d)
training_data = training_data.lstrip(d)
training_data = training_data.replace(FATHE_TASHDID, TASHDID_FATHE)
training_data = training_data.replace(KASRE_TASHDID, TASHDID_KASRE)
training_data = training_data.replace(ZAMME_TASHDID, TASHDID_ZAMME)
training_data = training_data.replace(TANVINE_FATHE_TASHDID, TASHDID_TANVINE_FATHE)
training_data = training_data.replace(TANVINE_KASREH_TASHDID, TASHDID_TANVINE_KASRE)
training_data = training_data.replace(TANVINE_ZAMME_TASHDID, TASHDID_TANVINE_ZAMME)
for k, v in diacritics_mappings.items():
training_data = training_data.replace(k, v)
# ############################Cleaning Training Data###############################
splitted_training_data = re.split('[!؟:،؛,.]', training_data)
cleaned_training_data = ''
for s in splitted_training_data:
if len(s) > maxlen:
cleaned_training_data += s + '.'
refined_text = ''
for i in range(0, len(cleaned_training_data) - 1):
if cleaned_training_data[i] in diacritics:
refined_text += cleaned_training_data[i]
elif cleaned_training_data[i + 1] not in diacritics:
refined_text += cleaned_training_data[i] + SAKEN_CHAR
else:
refined_text += cleaned_training_data[i]
i += 1
if cleaned_training_data[i] in diacritics:
refined_text += cleaned_training_data[i]
else:
refined_text += cleaned_training_data[i] + SAKEN_CHAR
# print('refined_text', refined_text)
with codecs.open('refined_text.txt', encoding='utf-8', mode='w+') as f:
f.write(refined_text)
'''
refined_text = ''
for i in range(0, len(training_data) - 1):
if training_data[i] in diacritics:
refined_text += training_data[i]
elif training_data[i + 1] not in diacritics:
refined_text += training_data[i] + SAKEN_CHAR
else:
refined_text += training_data[i]
i += 1
if training_data[i] in diacritics:
refined_text += training_data[i]
else:
refined_text += training_data[i] + SAKEN_CHAR
#print('refined_text', refined_text)
'''
########################################################################
'''
do it again for testing data for calculating accuracy at the end
'''
# Testing Data & Refined Testing Data
testing_data = original_text[int(0.75 * original_text_length):].strip()
if os.path.exists('testing_data.txt') & os.path.exists('refined_testing_data'):
with codecs.open('testing_data.txt', encoding='utf-8-sig') as testing_data_file:
testing_data = testing_data_file.read()
with codecs.open('refined_testing_data.txt', encoding='utf-8-sig') as refined_testing_data_file:
refined_testing_data = refined_testing_data_file.read()
else:
testing_data = testing_data.replace(FATHE_TASHDID, TASHDID_FATHE)
testing_data = testing_data.replace(KASRE_TASHDID, TASHDID_KASRE)
testing_data = testing_data.replace(ZAMME_TASHDID, TASHDID_ZAMME)
testing_data = testing_data.replace(TANVINE_FATHE_TASHDID, TASHDID_TANVINE_FATHE)
testing_data = testing_data.replace(TANVINE_KASREH_TASHDID, TASHDID_TANVINE_KASRE)
testing_data = testing_data.replace(TANVINE_ZAMME_TASHDID, TASHDID_TANVINE_ZAMME)
for k, v in diacritics_mappings.items():
testing_data = testing_data.replace(k, v)
########################################################################################
refined_testing_data = ''
for i in range(0, len(testing_data) - 1):
if testing_data[i] in diacritics:
refined_testing_data += testing_data[i]
elif testing_data[i + 1] not in diacritics:
refined_testing_data += testing_data[i] + SAKEN_CHAR
else:
refined_testing_data += testing_data[i]
i += 1
if testing_data[i] in diacritics:
refined_testing_data += testing_data[i]
else:
refined_testing_data += testing_data[i] + SAKEN_CHAR
refined_testing_data = refined_testing_data.lstrip(''.join(diacritics))
# testing_data = refined_testing_data # think about if it is correct to add this line
# preparing testing data
for c in diacritics:
testing_data = testing_data.replace(c, '')
testing_data = ((maxlen - 1) // 2) * (' ' + SAKEN_CHAR) + testing_data
# print("testing_data", testing_data)
# print('refined_testing_data', refined_testing_data)
with codecs.open('testing_data.txt', encoding='utf-8', mode='w+') as f:
f.write(testing_data)
with codecs.open('refined_testing_data.txt', encoding='utf-8', mode='w+') as f:
f.write(refined_testing_data)
diacritics_dict = dict((c, 0) for i, c in enumerate(np.array(list(diacritics))))
print(diacritics_dict)
for c in refined_testing_data:
if c in diacritics_dict:
diacritics_dict[c] += 1
print('Number of occurrence of each diacritic:')
print(diacritics_dict)
#####################################################################################################
alphabet = set('شسزرذدخحجثتةبائؤأإآءیۀگکژچپيوهنملقفغعظطضصٔٴ ك ى') - set(' ')
all_chars = set(refined_text) | set(original_text) | diacritics | alphabet
characters_without_need_to_diacritics = (all_chars - diacritics) - alphabet
print('all_chars:', all_chars)
print('diacritics:', diacritics)
print('alphabet:', alphabet)
print('characters_without_need_to_diacritics:', characters_without_need_to_diacritics)
print('total chars:', len(all_chars))
print('diacritics:', len(diacritics))
print('characters_without_need_to_diacritics:', len(characters_without_need_to_diacritics))
print('alphabet:', len(alphabet))
char_indices = dict((c, i) for i, c in enumerate(all_chars))
indices_char = dict((i, c) for i, c in enumerate(all_chars))
diacritics_indices = dict((c, i) for i, c in enumerate(diacritics))
indices_diacritics = dict((i, c) for i, c in enumerate(diacritics))
######################################################################################################
# cut the text in semi-redundant sequences of maxlen characters
step = 2
sentences = []
next_chars = []
refined_text_tokens = re.split('[.]', refined_text)
for token in refined_text_tokens:
token = token.lstrip(''.join(diacritics))
token_length = len(token)
token += maxlen_after * (' ' + SAKEN_CHAR)
for i in range(0, token_length - maxlen, step):
rx = '[' + re.escape(''.join(diacritics)) + ']'
after_chars = re.sub(rx, '', token[i + maxlen + 1: i + maxlen + 1 + (2 * maxlen_after)])
sentences.append(token[i: i + maxlen] + after_chars)
next_chars.append(token[i + maxlen])
'''
for i in range(0, len(refined_text) - maxlen, step):
sentences.append(refined_text[i: i + maxlen])
next_chars.append(refined_text[i + maxlen])
'''
#with open('refined_text.txt', mode='w+') as f:
#with codecs.open('refined_text.txt', encoding='utf-8', mode='w+') as f:
# f.write(refined_text)
print('nb sequences:', len(sentences))
print('Vectorization...')
X = np.zeros((len(sentences), maxlen + maxlen_after, len(all_chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(diacritics)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, char_indices[char]] = 1
y[i, diacritics_indices[next_chars[i]]] = 1
with codecs.open('inputs.txt', encoding='utf-8', mode='w+') as f:
for i, sentence in enumerate(sentences):
f.write((repr(i) + '\n'))
f.write(('\nsentence:' + sentence + '\n'))
f.write(('\nnext_char:' + next_chars[i] + '\n'))
f.write('\n')
# build the model: 2 stacked LSTM
print('Build model...')
nn = 32
#model = Sequential()
#model.add(Bidirectional(GRU(nn, return_sequences=True), input_shape=(maxlen, len(all_chars))))
#model.add(Dropout(0.20))
#model.add(Bidirectional(GRU(nn, return_sequences=True)))
#model.add(Dropout(0.20))
#model.add(Bidirectional(GRU(nn, return_sequences=True)))
#model.add(Dropout(0.20))
#model.add(Bidirectional(GRU(nn)))
#model.add(Dropout(0.20))
#model.add(Dense((len(diacritics))))
#model.add(Activation('softmax'))
nn=64
model = Sequential()
model.add(GRU(nn, return_sequences=True, input_shape=(maxlen + maxlen_after, len(all_chars))))
#model.add(Dropout(0.10))
#model.add(GRU(nn, return_sequences=True))
#model.add(Dropout(0.10))
#model.add(GRU(nn, return_sequences=True))
#model.add(Dropout(0.10))
#model.add(GRU(nn, return_sequences=True))
#model.add(Dropout(0.10))
model.add(GRU(nn))
model.add(Dense((len(diacritics))))
model.add(Activation('sigmoid'))
optimizer = 'rmsprop'
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
def sample(preds, temperature=1.0):
# helper function to sample an index from a probability array
# preds = np.asarray(preds).astype('float64')
return np.argmax(preds)
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)
# train the model, output generated text after each iteration
testing_data_length = len(testing_data)
testing_data += maxlen_after * ' '
refined_testing_data += maxlen_after * (' ' + SAKEN_CHAR)
statistics_result = ''
accuracy_in_first_80_chars = 0.0
number_of_epoch = 10
for iteration in range(1, 31):
with codecs.open(EXPERIMENT_CONFIGURATION + '_Output.txt', encoding="utf-8", mode='a') as f:
f.write('\n')
f.write(('-' * 50) + '\n')
f.write('\nIteration ' + str(iteration) + '\n')
f.write('\nStart time: ' + str(datetime.now()) + '\n')
model.fit(X, y, batch_size=nn*10, nb_epoch=number_of_epoch)
for diversity in [1.0]:
with codecs.open(EXPERIMENT_CONFIGURATION + '_Output.txt', encoding="utf-8", mode='a') as f:
f.write('\n')
f.write('----- diversity: ' + str(diversity) + '\n')
next_diacritic = ''
generated = testing_data[0: maxlen - 1]
sentence = ''
correct_prediction = 0.0
wrong_prediction = 0.0
refined_testing_data_index = 0
correct_shamsi_tashdid = 0.0
wrong_shamsi_tashdid = 0.0
y_true = []
y_pred = []
for i in range(maxlen - 1, testing_data_length):
sentence = generated[len(generated) - maxlen + 1:] + testing_data[i] + testing_data[i + 1: i + 1 + maxlen_after]
x = np.zeros((1, maxlen + maxlen_after, len(all_chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_diacritic = indices_diacritics[next_index]
refined_testing_data_index = 2 * (i - (maxlen - 1)) + 1
if next_diacritic == refined_testing_data[refined_testing_data_index]: # finding out is the prediction correct
correct_prediction += 1.0 # in the training data
else:
wrong_prediction += 1.0
y_true.append(refined_testing_data[refined_testing_data_index])
y_pred.append(next_diacritic)
generated += testing_data[i] + next_diacritic
#added for Testing Tashdid
if generated[len(generated) - 6: len(generated) - 3] == 'اْل':
if generated[len(generated) - 2] in SHAMSI_CHARS:
if next_diacritic == TASHDID:
correct_shamsi_tashdid += 1.0
else:
wrong_shamsi_tashdid += 1.0
if i == 80 + (maxlen - 1):
accuracy_in_first_80_chars = round((correct_prediction/(correct_prediction + wrong_prediction)) * 100, 4)
generated = generated.replace(SAKEN_CHAR, '')
for k, v in diacritics_mappings.items():
generated = generated.replace(v, k)
with codecs.open(EXPERIMENT_CONFIGURATION + '_Output.txt', encoding='utf-8', mode='a') as f:
f.write('-----test data with diacritics: \n' + generated)
statistics_result = 'Iteration ' + str(iteration)
statistics_result += '\nNumber of Epoch: ' + str(number_of_epoch)
statistics_result += '\nOptimizer: ' + optimizer
statistics_result += '\nNumber of Layer: ' + str(model.layers.count(Bidirectional)) #does not work
statistics_result += '\nnn: ' + str(nn)
statistics_result += '\nDiversity: ' + str(diversity)
statistics_result += '\nCorrect Predictions: ' + str(correct_prediction)
statistics_result += '\nWrong Predictions: ' + str(wrong_prediction)
statistics_result += '\nAccuracy in first 80 characters: ' + \
str(accuracy_in_first_80_chars) + ' %'
statistics_result += '\nCorrect Shamsi Predictions: ' + str(correct_shamsi_tashdid)
statistics_result += '\nWrong Shamsi Predictions: ' + str(wrong_shamsi_tashdid)
statistics_result += '\nAccuracy of Shamsi Tashdid prediction in whole Testing data: ' + \
str(round((correct_shamsi_tashdid/(correct_shamsi_tashdid + wrong_shamsi_tashdid)) * 100, 4)) + ' %'
statistics_result += '\nAccuracy in Entire Testing data: ' + \
str(round((correct_prediction / (correct_prediction + wrong_prediction)) * 100, 4)) + ' %'
statistics_result += '\nnp.array(list(diacritics)): \n' + str(np.array(list(diacritics)))
statistics_result += '\nConfusion_matrix: \n' + str(confusion_matrix(y_true, y_pred,
labels=np.array(list(diacritics))))
statistics_result += str('\n' + ('*' * 50) + '\n\n')
with codecs.open(EXPERIMENT_CONFIGURATION + '_Statistics.txt', encoding='utf-8', mode='a') as f:
f.write(statistics_result)
with codecs.open(EXPERIMENT_CONFIGURATION + '_Output.txt', encoding='utf-8', mode='a') as f:
f.write('\nEnd time: ' + str(datetime.now()) + '\n' + '\n')
# model.save(EXPERIMENT_CONFIGURATION + '_Model.h5', overwrite=True)
model.save(EXPERIMENT_CONFIGURATION + '_Model.h5', overwrite=True)