|
17 | 17 | under the License.
|
18 | 18 | -->
|
19 | 19 |
|
20 |
| -# Status |
| 20 | +# Features |
21 | 21 |
|
22 | 22 | ## General
|
23 | 23 |
|
24 | 24 | - [x] SQL Parser
|
25 | 25 | - [x] SQL Query Planner
|
| 26 | +- [x] DataFrame API |
| 27 | +- [x] Parallel query execution |
| 28 | +- [x] Streaming Execution |
| 29 | + |
| 30 | +## Optimizations |
| 31 | + |
26 | 32 | - [x] Query Optimizer
|
27 | 33 | - [x] Constant folding
|
28 | 34 | - [x] Join Reordering
|
29 | 35 | - [x] Limit Pushdown
|
30 | 36 | - [x] Projection push down
|
31 | 37 | - [x] Predicate push down
|
32 |
| -- [x] Type coercion |
33 |
| -- [x] Parallel query execution |
34 | 38 |
|
35 | 39 | ## SQL Support
|
36 | 40 |
|
| 41 | +- [x] Type coercion |
37 | 42 | - [x] Projection (`SELECT`)
|
38 | 43 | - [x] Filter (`WHERE`)
|
39 | 44 | - [x] Filter post-aggregate (`HAVING`)
|
|
42 | 47 | - [x] Aggregate (`GROUP BY`)
|
43 | 48 | - [x] cast /try_cast
|
44 | 49 | - [x] [`VALUES` lists](https://www.postgresql.org/docs/current/queries-values.html)
|
45 |
| -- [x] [String Functions](./scalar_functions.md#string-functions) |
46 |
| -- [x] [Conditional Functions](./scalar_functions.md#conditional-functions) |
47 |
| -- [x] [Time and Date Functions](./scalar_functions.md#time-and-date-functions) |
48 |
| -- [x] [Math Functions](./scalar_functions.md#math-functions) |
49 |
| -- [x] [Aggregate Functions](./aggregate_functions.md) (`SUM`, `MEDIAN`, and many more) |
| 50 | +- [x] [String Functions](./sql/scalar_functions.md#string-functions) |
| 51 | +- [x] [Conditional Functions](./sql/scalar_functions.md#conditional-functions) |
| 52 | +- [x] [Time and Date Functions](./sql/scalar_functions.md#time-and-date-functions) |
| 53 | +- [x] [Math Functions](./sql/scalar_functions.md#math-functions) |
| 54 | +- [x] [Aggregate Functions](./sql/aggregate_functions.md) (`SUM`, `MEDIAN`, and many more) |
50 | 55 | - [x] Schema Queries
|
51 | 56 | - [x] `SHOW TABLES`
|
52 | 57 | - [x] `SHOW COLUMNS FROM <table/view>`
|
53 | 58 | - [x] `SHOW CREATE TABLE <view>`
|
54 |
| - - [x] Basic SQL [Information Schema](./information_schema.md) (`TABLES`, `VIEWS`, `COLUMNS`) |
55 |
| - - [ ] Full SQL [Information Schema](./information_schema.md) support |
56 |
| -- [ ] Support for nested types (`ARRAY`/`LIST` and `STRUCT`. See [#2326](https://github.com/apache/datafusion/issues/2326) for details) |
| 59 | + - [x] Basic SQL [Information Schema](./sql/information_schema.md) (`TABLES`, `VIEWS`, `COLUMNS`) |
| 60 | + - [ ] Full SQL [Information Schema](./sql/information_schema.md) support |
| 61 | +- [x] Support for nested types (`ARRAY`/`LIST` and `STRUCT`. |
57 | 62 | - [x] Read support
|
58 | 63 | - [x] Write support
|
59 | 64 | - [x] Field access (`col['field']` and [`col[1]`])
|
60 |
| - - [x] [Array Functions](./scalar_functions.md#array-functions) |
61 |
| - - [ ] [Struct Functions](./scalar_functions.md#struct-functions) |
| 65 | + - [x] [Array Functions](./sql/scalar_functions.md#array-functions) |
| 66 | + - [x] [Struct Functions](./sql/scalar_functions.md#struct-functions) |
62 | 67 | - [x] `struct`
|
63 | 68 | - [ ] [Postgres JSON operators](https://github.com/apache/datafusion/issues/6631) (`->`, `->>`, etc.)
|
64 | 69 | - [x] Subqueries
|
|
73 | 78 | - [x] Catalogs
|
74 | 79 | - [x] Schemas (`CREATE / DROP SCHEMA`)
|
75 | 80 | - [x] Tables (`CREATE / DROP TABLE`, `CREATE TABLE AS SELECT`)
|
76 |
| -- [ ] Data Insert |
| 81 | +- [x] Data Insert |
77 | 82 | - [x] `INSERT INTO`
|
78 |
| - - [ ] `COPY .. INTO ..` |
| 83 | + - [x] `COPY .. INTO ..` |
79 | 84 | - [x] CSV
|
80 |
| - - [ ] JSON |
81 |
| - - [ ] Parquet |
| 85 | + - [x] JSON |
| 86 | + - [x] Parquet |
82 | 87 | - [ ] Avro
|
83 | 88 |
|
84 | 89 | ## Runtime
|
|
87 | 92 | - [x] Streaming Window Evaluation
|
88 | 93 | - [x] Memory limits enforced
|
89 | 94 | - [x] Spilling (to disk) Sort
|
90 |
| -- [ ] Spilling (to disk) Grouping |
| 95 | +- [x] Spilling (to disk) Grouping |
91 | 96 | - [ ] Spilling (to disk) Joins
|
92 | 97 |
|
93 | 98 | ## Data Sources
|
94 | 99 |
|
95 |
| -In addition to allowing arbitrary datasources via the `TableProvider` |
| 100 | +In addition to allowing arbitrary datasources via the [`TableProvider`] |
96 | 101 | trait, DataFusion includes built in support for the following formats:
|
97 | 102 |
|
98 | 103 | - [x] CSV
|
99 |
| -- [x] Parquet (for all primitive and nested types) |
| 104 | +- [x] Parquet |
| 105 | + - [x] Primitive and Nested Types |
| 106 | + - [x] Row Group and Data Page pruning on min/max statistics |
| 107 | + - [x] Row Group pruning on Bloom Filters |
| 108 | + - [x] Predicate push down (late materialization) [not by default](https://github.com/apache/datafusion/issues/3463) |
100 | 109 | - [x] JSON
|
101 | 110 | - [x] Avro
|
102 | 111 | - [x] Arrow
|
| 112 | + |
| 113 | +[`tableprovider`]: https://docs.rs/datafusion/latest/datafusion/catalog/trait.TableProvider.html |
0 commit comments