-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfitter_articulation.py
521 lines (456 loc) · 21.4 KB
/
fitter_articulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import numpy as np
import math
import torch
import os
import pickle
from time import time
import json
from tqdm import tqdm
import pyrender
from pyrender.constants import RenderFlags
import cv2
import trimesh
import torch.nn as nn
import torch.functional as F
from articulation_th import ArticulationTorch
from bodymodel_th import BodyModelTorch
from data_seaker_video_new import DataSeakerDet
import copy
from utils import *
from scipy.spatial.transform import Rotation
import matplotlib.pyplot as plt
from pytorch3d.renderer import (
look_at_view_transform,
PerspectiveCameras,
OrthographicCameras,
PointLights,
DirectionalLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
HardPhongShader,
TexturesUV,
TexturesVertex,
HardFlatShader,
HardGouraudShader,
AmbientLights,
SoftSilhouetteShader
)
from pytorch3d.structures import Meshes
from torch.utils.tensorboard import SummaryWriter
from pytorch3d.utils import cameras_from_opencv_projection
WITH_RENDER = True
KEYPOINT_NUM = 22
RENDER_CAMERAS = [0,1,2,3,4,5]
class MouseFitter():
def __init__(self):
mouse_path = "mouse_model/mouse.pkl"
img_size = (1024, 1152) #H,W
self.img_size = img_size
self.device = torch.device('cuda')
self.bodymodel = ArticulationTorch()
if WITH_RENDER:
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_size[1], viewport_height=img_size[0])
self.reg_weights = np.loadtxt("mouse_model/reg_weights.txt").squeeze()
self.keypoint_weight = np.ones(KEYPOINT_NUM)
self.keypoint_weight[4] = 0.4
self.keypoint_weight[11] = 0.9
self.keypoint_weight[15] = 0.9
self.keypoint_weight[5] = 2
self.keypoint_weight[6] = 1.5
self.keypoint_weight[7] = 1.5
self.keypoint_weight = torch.from_numpy(self.keypoint_weight).reshape([1,-1,1]).to(self.device)
bone_weight = np.ones(20)
bone_weight[11] = 1
bone_weight[19] = 1
self.bone_weight = torch.from_numpy(bone_weight).reshape([1,-1,1]).to(self.device)
self.data_loader = None
self.result_folder = ""
self.term_weights = {
"theta" : 3,
"3d": 2.5,
"2d": 0.2,
"bone": 0.5,
"scale": 0.5,
"mask": 10,
"chest_deformer": 0.1,
"stretch": 1,
"temp": 0.25,
"temp_d": 0.2
}
self.losses = {}
## init differentiable renderer
sigma = 3e-5
raster_settings_soft = RasterizationSettings(
image_size=img_size,
blur_radius=np.log(1. / 1e-4 - 1.) * sigma,
# blur_radius=0.01,
faces_per_pixel=50,
# bin_size = 56,
# max_faces_per_bin= 16
)
self.renderer_mask = MeshRenderer(
rasterizer=MeshRasterizer(raster_settings=raster_settings_soft),
shader = SoftSilhouetteShader()
)
faces_np = self.bodymodel.faces_vert_np.astype(np.int64)
self.faces_th = torch.from_numpy(faces_np).to(self.device).unsqueeze(0)
self.faces_th_reduced = torch.from_numpy(self.bodymodel.faces_reduced_7200).to(self.device).unsqueeze(0)
self.mask_loss_func = torch.nn.MSELoss()
## data loader
self.cam_dict = []
self.imgs = []
self.id = None
self.last_params = None
self.V_last = None
self.J_last = None
def set_cameras_dannce(self, cams):
self.camN = len(cams)
self.cam_dict = cams
self.cams_th = []
self.Rs = []
self.Ks = []
self.Ts = []
for cam in cams:
R = np.expand_dims(cam['R'].T, 0).astype(np.float32)
K = np.expand_dims(cam['K'].T, 0).astype(np.float32)
T = cam['T'].astype(np.float32)
img_size_np = np.expand_dims(np.asarray(self.img_size), 0).astype(np.float32)
cam_th = self.build_opencv_camera(R, T, K, img_size_np)
self.cams_th.append(cam_th)
self.Rs.append(torch.from_numpy(R).to(self.device))
self.Ts.append(torch.from_numpy(T).to(self.device))
self.Ks.append(torch.from_numpy(K).to(self.device))
# build camera from OpenCV camera format
# R: [N, 3,3], np.ndarray
# T: [N, 3], np.ndarray
# K: [N,3,3], np.ndarray
# imgsize:[N, 2 ], np.ndarray, h,w
def build_opencv_camera(self, R, T, K, imgsize):
R_tensor = torch.from_numpy(R).to(self.device)
tvec_tensor = torch.from_numpy(T).to(self.device)
K_tensor = torch.from_numpy(K).to(self.device)
imgsize_tensor = torch.from_numpy(imgsize).to(self.device)
return cameras_from_opencv_projection(R=R_tensor,
tvec=tvec_tensor, camera_matrix=K_tensor, image_size=imgsize_tensor)
def init_params(self, batch_size):
body_param = {
"thetas": np.tile(self.bodymodel.init_joint_rotvec_np, [batch_size, 1, 1]),
"trans": np.zeros([batch_size,3]),
"scale": np.ones([batch_size,1]) * 115,
"rotation": np.zeros([batch_size, 3]),
"bone_lengths": np.zeros([batch_size, 20]),
"chest_deformer": np.zeros([batch_size, 1])
}
self.init_thetas = torch.tensor(body_param["thetas"], dtype=torch.float32, device=self.device)
return body_param
def calc_2d_keypoint_loss(self, J3d, x2):
loss = 0
for camid in range(self.camN):
J2d = ([email protected][camid].transpose(1,2) + self.Ts[camid]) @ self.Ks[camid].transpose(1,2)
J2d = J2d / J2d[:,:,2:]
J2d = J2d[:,:,0:2]
loss += torch.mean(torch.norm((J2d - x2[:,camid,:,0:2]) * x2[:,camid,:,2:] * self.keypoint_weight, dim=-1) )
return loss
def calc_3d_loss(self, x1, x2):
res = (x1 - x2) * self.keypoint_weight
loss = torch.mean(torch.norm(res, dim=-1))
return loss
## both J_prev and J_curr are embed joints (140, 3)
def calc_deformer_end_temporal_loss(self, J_prev, J_curr):
res = J_prev[:,[50,120]] - J_curr[:,[50,120]]
loss = torch.mean(torch.norm(res, dim=-1)) * 5
return loss
def calc_scale_loss(self, scale, target):
loss = torch.mean(torch.norm(scale-target, dim=-1))
return loss
def calc_chest_deformer_loss(self, chest_deformer):
loss = torch.mean(torch.norm(chest_deformer, dim=-1))
return loss
def calc_bone_length_constraint(self, bone_lengths):
loss = torch.norm(bone_lengths * self.bone_weight)
return loss
def calc_temporal_term(self, params, V, J):
loss = 0
for k, v in params.items():
loss = loss + torch.mean(torch.norm(params[k] - self.last_params[k], dim=-1))
loss += torch.mean(torch.norm(V-self.V_last, dim=-1))
loss += torch.mean(torch.norm(J-self.J_last, dim=-1))
return loss
def calc_stretch_to_constraints(self, joints):
dist1 = torch.mean(torch.norm(joints[:,50] - joints[:,121], dim=-1))
dist2 = torch.mean(torch.norm(joints[:,65] - joints[:,123], dim=-1))
dist3 = torch.mean(torch.norm(joints[:,72] - joints[:,134], dim=-1))
dist4 = torch.mean(torch.norm(joints[:,97] - joints[:,134], dim=-1))
return dist1 + dist2 + dist3 + dist4
## theta regularization.
def calc_theta_loss(self, thetas):
weights = torch.from_numpy(self.reg_weights).reshape([1,-1,1]).type(torch.float32).to(self.device)
loss_theta = torch.norm( (thetas - self.init_thetas) * weights)
return loss_theta
def set_previous_frame(self, previous_params):
self.last_params = {}
for k,v in previous_params.items():
self.last_params.update({
k: v.detach().to(self.device)
})
self.V_last, self.J_last = self.bodymodel.forward(
self.last_params["thetas"],
self.last_params["bone_lengths"],
self.last_params["rotation"],
self.last_params["trans"],
self.last_params["scale"],
self.last_params["chest_deformer"]
)
def gen_closure(self, optimizer, body_param, target):
def closure():
optimizer.zero_grad()
V,J = self.bodymodel.forward(body_param["thetas"], body_param["bone_lengths"], \
body_param["rotation"], body_param["trans"], body_param["scale"], body_param["chest_deformer"])
keypoints = self.bodymodel.forward_keypoints22()
# loss_3d = self.calc_3d_loss(keypoints, target["target_3d"])
loss_2d = self.calc_2d_keypoint_loss(keypoints, target["target_2d"])
loss_theta = self.calc_theta_loss(body_param["thetas"])
loss_bone_length = self.calc_bone_length_constraint(body_param["bone_lengths"])
loss_scale = self.calc_scale_loss(body_param["scale"], 115)
loss_chest_deformer = self.calc_chest_deformer_loss(body_param["chest_deformer"])
loss_stretch_to_constraints = self.calc_stretch_to_constraints(J)
loss_temp = 0
loss_deformer_temp = 0
if self.last_params is not None:
loss_temp = self.calc_temporal_term(body_param, V, J)
loss_deformer_temp = self.calc_deformer_end_temporal_loss(J_prev=self.J_last, J_curr = J)
## mask loss
V_reduced = V[:,self.bodymodel.reduced_ids,:]
mesh = Meshes(V_reduced, self.faces_th_reduced)
loss_mask = torch.tensor(0.0, device=self.device)
if self.term_weights["mask"] > 0:
for k in RENDER_CAMERAS:
mask = self.renderer_mask(mesh, cameras = self.cams_th[k])[...,-1]
loss_mask += self.mask_loss_func(mask, target["mask"+str(k)])
self.losses.update({
"theta": round(float(loss_theta.detach().cpu().numpy()), 2),
"2d": round(float(loss_2d.detach().cpu().numpy()), 2),
"bone": round(float(loss_bone_length.detach().cpu().numpy()), 2),
"scale" : round(float(loss_scale.detach().cpu().numpy()), 2),
"mask": round(float(loss_mask.detach().cpu().numpy()), 2),
"chest_d": round(float(loss_chest_deformer.detach().cpu().numpy()), ),
"stretch": round(float(loss_stretch_to_constraints.detach().cpu().numpy()), 2)
})
if loss_temp > 0:
self.losses.update(
{
"temp": round(float(loss_temp.detach().cpu().numpy()), 2),
"temp_d": round(float(loss_deformer_temp.detach().cpu().numpy()), 2)
}
)
loss_v = loss_2d * self.term_weights["2d"] \
+ loss_theta * self.term_weights["theta"] \
+ loss_bone_length * self.term_weights["bone"] \
+ loss_scale * self.term_weights["scale"] \
+ loss_mask * self.term_weights["mask"] \
+ loss_chest_deformer * self.term_weights["chest_deformer"] \
+ loss_stretch_to_constraints * self.term_weights["stretch"] \
+ loss_temp * self.term_weights["temp"] \
+ loss_deformer_temp * self.term_weights["temp_d"]
loss_v.backward()
return loss_v
return closure
def solve_step0(self, params, target, max_iters):
## step1: optimize skeleton
tolerate = 1e-2
optimizer = torch.optim.LBFGS(params.values(), line_search_fn="strong_wolfe")
# optimizer = torch.optim.Adam(params.values(), lr=0.001)
closure = self.gen_closure(
optimizer, params, target
)
loss_prev = float('inf')
self.keypoint_weight[:,16:19,:] = 1
self.keypoint_weight[:,19:22,:] = 1
self.term_weights["mask"] = 0
self.term_weights["stretch"] = 0
params["chest_deformer"].requires_grad_(False)
params["thetas"].requires_grad_(False)
params["bone_lengths"].requires_grad_(False)
for i in range(max_iters):
loss = optimizer.step(closure).item()
print(self.losses)
if abs(loss-loss_prev) < tolerate:
break
else:
print('iter ' + str(i) + ': ' + '%.2f'%loss + " diff: " + "%.2f"%(loss-loss_prev))
loss_prev = loss
if WITH_RENDER:
imgs = self.imgs.copy()
self.render(params, imgs, RENDER_CAMERAS, 0, self.result_folder + "/render/debug/fitting_{}_global_iter_{:05d}.png".format(self.id, i), self.cam_dict)
params["chest_deformer"].requires_grad_(True)
params["thetas"].requires_grad_(True)
params["bone_lengths"].requires_grad_(True)
return params
def solve_step1(self, params, target, max_iters):
## step1: optimize skeleton
tolerate = 1e-4
optimizer = torch.optim.LBFGS(params.values(), line_search_fn="strong_wolfe")
# optimizer = torch.optim.Adam(params.values(), lr=0.001)
closure = self.gen_closure(
optimizer, params, target
)
loss_prev = float('inf')
self.keypoint_weight[:,16:19,:] = 1
self.keypoint_weight[:,19:22,:] = 1
self.term_weights["mask"] = 0
self.term_weights["stretch"] = 0
params["chest_deformer"].requires_grad_(False)
for i in range(max_iters):
loss = optimizer.step(closure).item()
print(self.losses)
if abs(loss-loss_prev) < tolerate:
break
else:
print('iter ' + str(i) + ': ' + '%.2f'%loss + " diff: " + "%.2f"%(loss-loss_prev))
loss_prev = loss
if self.id == 0 and WITH_RENDER:
imgs = self.imgs.copy()
self.render(params, imgs, RENDER_CAMERAS, 0, self.result_folder + "/render/debug/fitting_{}_debug_iter_{:05d}.png".format(self.id, i), self.cam_dict)
if WITH_RENDER:
imgs = self.imgs.copy()
self.render(params, imgs, RENDER_CAMERAS, 0, self.result_folder + "/render/fitting_{}.png".format(self.id), self.cam_dict)
self.draw_keypoints_compare(params, imgs, RENDER_CAMERAS, 0, self.result_folder + "/fitting_keypoints_{}.png".format(self.id), self.cam_dict)
with open(self.result_folder + "/params/param{}.pkl".format(self.id), 'wb') as f:
pickle.dump(params,f)
params["chest_deformer"].requires_grad_(True)
return params
def solve_step2(self, params, target, max_iters):
## step2: optim with mask
## enlarge foot keypoint weight because mask on foot are bad.
tolerate = 1e-4
optimizer = torch.optim.LBFGS(params.values(), line_search_fn="strong_wolfe")
# optimizer = torch.optim.Adam(params.values(), lr=0.001)
closure = self.gen_closure(
optimizer, params, target
)
self.keypoint_weight[:,16:19,:] = 10
self.keypoint_weight[:,19:22,:] = 10
self.term_weights["mask"] = 3000
self.term_weights["stretch"] = 0
loss_prev = float('inf')
optimizer.zero_grad()
for i in range(max_iters):
loss = optimizer.step(closure).item()
print(self.losses)
if abs(loss-loss_prev) < tolerate:
break
else:
print('iter ' + str(i) + ': ' + '%.2f'%loss + " diff: " + "%.2f"%(loss-loss_prev))
loss_prev = loss
if WITH_RENDER:
imgs = self.imgs.copy()
self.render(params, imgs, RENDER_CAMERAS, 0, self.result_folder+"/render/fitting_{}_sil.png".format(self.id), self.cam_dict)
# self.draw_keypoints_compare(params, imgs, RENDER_CAMERAS, 0, self.result_folder + "/fitting_keypoints_{}_sil.png".format(self.id), self.cam_dict)
with open(self.result_folder + "/params/param{}_sil.pkl".format(self.id), 'wb') as f:
pickle.dump(params,f)
self.result = params
return params
def render(self, result, imgs, views, batch_id, filename, cams_dict):
V,J = self.bodymodel.forward(result["thetas"], result["bone_lengths"], \
result["rotation"], result["trans"] / 1000, result["scale"] / 1000, result["chest_deformer"])
vertices = V[batch_id].detach().cpu().numpy()
faces = self.bodymodel.faces_vert_np
scene = pyrender.Scene() #ambient_light=np.ones(3), bg_color=np.array([0.5, 0.5, 0.5]))
# light_node = scene.add(pyrender.DirectionalLight(color=np.ones(3), intensity=3.0))
light_node = scene.add(pyrender.PointLight(color=np.ones(3), intensity=0.2))
scene.add(pyrender.Mesh.from_trimesh(trimesh.Trimesh(
vertices=vertices, faces=faces, vertex_colors=np.array([0.8, 0.6, 0.4]))))
color_maps = []
for view in views:
cam_param = cams_dict[view]
K, R, T = cam_param['K'].T, cam_param['R'].T, cam_param['T'].T / 1000
camera_pose = np.eye(4)
camera_pose[:3, :3] = R.T
camera_pose[:3, 3:4] = np.dot(-R.T, T)
camera_pose[:, 1:3] = -camera_pose[:, 1:3]
camera = pyrender.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2])
cam_node = scene.add(camera, name='cam', pose=camera_pose)
light_node._matrix = camera_pose
color, _ = self.renderer.render(scene, flags=RenderFlags.SHADOWS_DIRECTIONAL)
scene.remove_node(cam_node)
img_i = imgs[view]
color = copy.deepcopy(color)
background_mask = color[:, :, :] == 255
color[background_mask] = img_i[background_mask]
color_maps.append(color)
output = pack_images(color_maps)
if filename is not None:
cv2.imwrite(filename, output)
return output
def draw_keypoints_compare(self, result, imgs, views, batch_id, filename, cams_dict):
myimages = imgs.copy()
V,J = self.bodymodel.forward(result["thetas"], result["bone_lengths"], \
result["rotation"], result["trans"] / 1000, result["scale"] / 1000, result["chest_deformer"])
keypoints = self.bodymodel.forward_keypoints22()
joints = keypoints[batch_id].detach().cpu().numpy()
all_drawn_images = []
for camid in views:
cam = cams_dict[camid]
data2d = (joints@cam['R'] + cam["T"] / 1000)@cam["K"]
data2d = data2d[:,0:2] / data2d[:,2:]
img_drawn = draw_keypoints(myimages[camid], data2d, bones, is_draw_bone=True)
all_drawn_images.append(img_drawn)
outputimg = pack_images(all_drawn_images)
cv2.imwrite(filename, outputimg)
import argparse
def optim_single():
parser = argparse.ArgumentParser()
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--end", type=int, default=1)
parser.add_argument("--interval", type=int, default=1)
parser.add_argument("--date", type=str, default="")
parser.add_argument("--resume", type=bool, default=False)
args = parser.parse_args()
data_name = "markerless_mouse_1"
data_loader = DataSeakerDet()
device = torch.device('cuda')
fitter = MouseFitter()
fitter.set_cameras_dannce(data_loader.cams_dict_out)
camN = len(data_loader.cams_dict_out)
fitter.result_folder = "mouse_fitting_result/results/"
os.makedirs(fitter.result_folder, exist_ok=True)
subfolders = ["params", "render", "render/debug/"]
for subfolder in subfolders:
os.makedirs(os.path.join(fitter.result_folder, subfolder), exist_ok=True)
print("camN: ", camN)
targets = np.arange(args.start, args.end, args.interval).tolist()
start = targets[0]
for index in targets:
print("process ... ", index)
labels = data_loader.fetch(index, with_img = WITH_RENDER)
fitter.id = index
fitter.imgs = labels["imgs"]
if index == start:
if args.resume:
with open(os.path.join(fitter.result_folder, "params/param{}_sil.pkl".format(index-1)), 'rb') as f:
init_params = pickle.load(f)
fitter.set_previous_frame(init_params)
params = init_params
else:
init_params = fitter.init_params(1)
params = {k: torch.tensor(v, dtype=torch.float32, device=device).requires_grad_(True) for k, v in init_params.items()}
target = {
'target_2d': torch.FloatTensor(labels["label2d"]).reshape([-1,camN,KEYPOINT_NUM,3]).to(device)
}
for viewid in range(camN):
target.update({
"mask{}".format(viewid): torch.from_numpy(np.expand_dims(labels["bgs"][viewid],axis=0)).to(device) # should be [bs, ]
})
if index == start:
params = fitter.solve_step0(params = params, target=target, max_iters = 10)
params = fitter.solve_step1(params = params, target=target, max_iters = 100)
params = fitter.solve_step2(params = params, target=target, max_iters = 30)
else:
params = fitter.solve_step1(params = params, target=target, max_iters = 10)
params = fitter.solve_step2(params = params, target=target, max_iters = 30)
fitter.set_previous_frame(params)
if __name__ == "__main__":
optim_single()