-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacgan_test.py
285 lines (225 loc) · 12.1 KB
/
acgan_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torchvision import datasets
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
from shutil import rmtree
import args
import util
from models import acgan
from eval import fid_score
def set_random_seed(seed=23):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def main():
#set_random_seed()
# Change the following comments for CPU
#device, gpu_ids = util.get_available_devices()
device = torch.device('cpu')
# Arguments
opt = args.get_setup_args()
num_classes = opt.num_classes
noise_dim = opt.latent_dim + opt.num_classes
train_images_path = os.path.join(opt.data_path, "train")
output_train_images_path = train_images_path + "_" + str(opt.img_size)
output_sample_images_path = os.path.join(opt.output_path, opt.version, "sample_eval")
output_nn_pixel_images_path = os.path.join(opt.output_path, opt.version, "nn_eval_pixel")
output_nn_inception_images_path = os.path.join(opt.output_path, opt.version, "nn_eval_inception")
os.makedirs(output_sample_images_path, exist_ok=True)
os.makedirs(output_nn_pixel_images_path, exist_ok=True)
#os.makedirs(output_nn_inception_images_path, exist_ok=True)
def get_nn_pixels(sample_images, train_images):
nn = [None]*len(sample_images)
pdist = torch.nn.PairwiseDistance(p=2)
N, C, H, W = train_images.shape
for i in range(len(sample_images)):
sample_image = sample_images[i].unsqueeze(0)
sample_image = torch.cat(N*[sample_image])
distances = pdist(sample_image.view(-1, C*H*W), train_images.view(-1, C*H*W))
min_index = torch.argmin(distances)
nn[i] = train_images[min_index]
r = torch.stack(nn, dim=0).squeeze().to(device)
return r
def get_nn_inception(sample_activations, train_activations, train_images):
nn = [None]*len(sample_activations)
pdist = torch.nn.PairwiseDistance(p=2)
N = train_activations.size(0)
for i in range(len(sample_activations)):
sample_act = sample_activations[i].unsqueeze(0)
sample_act = torch.cat(N*[sample_act])
distances = pdist(sample_act, train_activations)
min_index = torch.argmin(distances)
nn[i] = train_images[min_index]
r = torch.stack(nn, dim=0).squeeze().to(device)
return r
def get_nearest_neighbour_pixels(sample_images, num_images, train_images, train_labels):
all_nn = []
for i in range(num_classes):
train_imgs = train_images[train_labels[:] == i]
nearest_n = get_nn_pixels(sample_images[i*num_images:(i+1)*num_images], train_imgs)
class_nn = torch.stack([sample_images[i*num_images:(i+1)*num_images], nearest_n], dim=0).squeeze().view(-1, 3, opt.img_size, opt.img_size).to(device)
all_nn.append(class_nn)
#r = torch.stack(nn, dim=0).squeeze().view(-1, 3, opt.img_size, opt.img_size).to(device)
#print(r.shape)
return all_nn
def get_nearest_neighbour_inception(sample_images, num_images, train_images, train_labels):
print("Getting sample activations...")
sample_activations = fid_score.get_activations_given_path(output_sample_images_path, opt.batch_size, device)
sample_activations = torch.from_numpy(sample_activations).type(torch.FloatTensor).to(device)
print("Getting train activations...")
train_activations = fid_score.get_activations_given_path(output_train_images_path, opt.batch_size, device)
train_activations = torch.from_numpy(train_activations).type(torch.FloatTensor).to(device)
all_nn = []
for i in range(num_classes):
train_imgs = train_images[train_labels[:] == i]
train_act = train_activations[train_labels[:] == i]
nearest_n = get_nn_inception(sample_activations[i*num_images:(i+1)*num_images], train_act, train_images)
class_nn = torch.stack([sample_images[i*num_images:(i+1)*num_images], nearest_n], dim=0).squeeze().view(-1, 3, opt.img_size, opt.img_size).to(device)
all_nn.append(class_nn)
#r = torch.stack(nn, dim=0).squeeze().view(-1, 3, opt.img_size, opt.img_size).to(device)
#print(r.shape)
return all_nn
def get_onehot_labels(num_images):
labels = torch.zeros(num_images, 1).to(device)
for i in range(num_classes - 1):
temp = torch.ones(num_images, 1).to(device) + i
labels = torch.cat([labels, temp], 0)
labels_onehot = torch.zeros(num_images * num_classes, num_classes).to(device)
labels_onehot.scatter_(1, labels.to(torch.long), 1)
return labels_onehot
def sample_images(num_images, itr):
'''
labels = torch.zeros((num_classes * num_images,), dtype=torch.long).to(device)
for i in range(num_classes):
for j in range(num_images):
labels[i*num_images + j] = i
labels_onehot = F.one_hot(labels, num_classes)
'''
train_set = datasets.ImageFolder(root=train_images_path,
transform=transforms.Compose([
transforms.Resize((opt.img_size, opt.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
'''
source_images_available = True
if (not os.path.exists(output_train_images_path)):
os.makedirs(output_train_images_path)
source_images_available = False
if (not source_images_available):
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=1,
num_workers=opt.num_workers)
else:
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=opt.batch_size,
num_workers=opt.num_workers)
'''
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=opt.batch_size,
num_workers=opt.num_workers)
train_images = torch.FloatTensor().to(device)
train_labels = torch.LongTensor().to(device)
print("Loading train images...")
for i, data in enumerate(train_loader, 0):
img, label = data
img = img.to(device)
label = label.to(device)
train_images = torch.cat([train_images, img], 0)
train_labels = torch.cat([train_labels, label], 0)
#if (not source_images_available):
# vutils.save_image(img, "{}/{}.jpg".format(output_train_images_path, i), normalize=True)
print("Estimating nearest neighbors in pixel space, this takes a few minutes...")
for it in range(itr):
z = torch.randn((num_classes * num_images, opt.latent_dim)).to(device)
labels_onehot = get_onehot_labels(num_images)
z = torch.cat((z, labels_onehot.to(dtype=torch.float)), 1)
sample_imgs = gen(z)
for i in range(len(sample_imgs)):
vutils.save_image(sample_imgs[i], "{}/{}.png".format(output_sample_images_path, i), normalize=True)
nearest_neighbour_imgs_list = get_nearest_neighbour_pixels(sample_imgs, num_images, train_images, train_labels)
for label, nn_imgs in enumerate(nearest_neighbour_imgs_list):
vutils.save_image(nn_imgs.data, "{}/iter{}-{}.png".format(output_nn_pixel_images_path, it, label), nrow=num_images, padding=2, normalize=True)
print("Saved nearest neighbors.")
'''
print("Estimating nearest neighbors in feature space, this takes a few minutes...")
nearest_neighbour_imgs_list = get_nearest_neighbour_inception(sample_imgs, num_images, train_images, train_labels)
for label, nn_imgs in enumerate(nearest_neighbour_imgs_list):
vutils.save_image(nn_imgs.data, "{}/{}.png".format(output_nn_inception_images_path, label), nrow=num_images, padding=2, normalize=True)
print("Saved nearest neighbors.")
'''
def eval_fid(gen_images_path, eval_images_path):
print("Calculating FID...")
fid = fid_score.calculate_fid_given_paths((gen_images_path, eval_images_path), opt.batch_size, device)
return fid
def evaluate(source_images_path, keep_images=True):
dataset = datasets.ImageFolder(root=source_images_path,
transform=transforms.Compose([
transforms.Resize((opt.img_size, opt.img_size)),
transforms.ToTensor()
]))
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers)
output_gen_images_path = os.path.join(opt.output_path, opt.version, opt.eval_mode)
os.makedirs(output_gen_images_path, exist_ok=True)
output_source_images_path = source_images_path + "_" + str(opt.img_size)
source_images_available = True
if (not os.path.exists(output_source_images_path)):
os.makedirs(output_source_images_path)
source_images_available = False
images_done = 0
for _, data in enumerate(dataloader, 0):
images, labels = data
batch_size = images.size(0)
noise = torch.randn((batch_size, opt.latent_dim)).to(device)
labels = torch.randint(0, num_classes, (batch_size,)).to(device)
labels_onehot = F.one_hot(labels, num_classes)
noise = torch.cat((noise, labels_onehot.to(dtype=torch.float)), 1)
gen_images = gen(noise)
for i in range(images_done, images_done + batch_size):
vutils.save_image(gen_images[i - images_done, :, :, :], "{}/{}.jpg".format(output_gen_images_path, i), normalize=True)
if (not source_images_available):
vutils.save_image(images[i - images_done, :, :, :], "{}/{}.jpg".format(output_source_images_path, i), normalize=True)
images_done += batch_size
fid = eval_fid(output_gen_images_path, output_source_images_path)
if (not keep_images):
print("Deleting images generated for validation...")
rmtree(output_gen_images_path)
return fid
test_images_path = os.path.join(opt.data_path, "test")
val_images_path = os.path.join(opt.data_path, "val")
model_path = os.path.join(opt.output_path, opt.version, opt.model_file)
gen = acgan.Generator(noise_dim).to(device)
if (opt.model_file.endswith(".pt")):
gen.load_state_dict(torch.load(model_path, map_location=device))
elif (opt.model_file.endswith(".tar")):
checkpoint = torch.load(model_path, map_location=device)
gen.load_state_dict(checkpoint['g_state_dict'])
gen.eval()
if opt.eval_mode == "val":
source_images_path = val_images_path
elif opt.eval_mode == "test":
source_images_path = test_images_path
if opt.eval_mode == "val" or opt.eval_mode == "test":
print("Evaluating model...")
fid = evaluate(source_images_path)
print("FID: {}".format(fid))
elif opt.eval_mode == "nn":
sample_images(opt.num_sample_images, 50)
if __name__ == '__main__':
main()