Skip to content

Commit 2ffe021

Browse files
committed
Updated example to use load_async [skip ci]
1 parent 2dfa1e8 commit 2ffe021

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -501,15 +501,15 @@ Perform keyword search
501501

502502
```ruby
503503
query = "growling bear"
504-
keyword_results = Document.keyword_search(query).first(20)
504+
keyword_results = Document.keyword_search(query).limit(20).load_async
505505
```
506506

507507
And semantic search (the query prefix is specific to the [embedding model](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1#mxbai-embed-large-v1))
508508

509509
```ruby
510510
query_prefix = "Represent this sentence for searching relevant passages: "
511511
query_embedding = embed.(query_prefix + query)
512-
semantic_results = Document.nearest_neighbors(:embedding, query_embedding, distance: "cosine").first(20)
512+
semantic_results = Document.nearest_neighbors(:embedding, query_embedding, distance: "cosine").limit(20).load_async
513513
```
514514

515515
And rerank the results

examples/hybrid/example.rb

+3-2
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22
require "informers"
33
require "neighbor"
44

5+
ActiveRecord.async_query_executor = :global_thread_pool
56
ActiveRecord::Base.establish_connection adapter: "postgresql", database: "neighbor_test"
67
ActiveRecord::Schema.verbose = false
78
ActiveRecord::Schema.define do
@@ -39,12 +40,12 @@ class Document < ActiveRecord::Base
3940
Document.insert_all!(documents)
4041

4142
query = "growling bear"
42-
keyword_results = Document.keyword_search(query).first(20)
43+
keyword_results = Document.keyword_search(query).limit(20).load_async
4344

4445
# the query prefix is specific to the embedding model (https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
4546
query_prefix = "Represent this sentence for searching relevant passages: "
4647
query_embedding = embed.(query_prefix + query)
47-
semantic_results = Document.nearest_neighbors(:embedding, query_embedding, distance: "cosine").first(20)
48+
semantic_results = Document.nearest_neighbors(:embedding, query_embedding, distance: "cosine").limit(20).load_async
4849

4950
results = (keyword_results + semantic_results).uniq(&:id)
5051
p rerank.(query, results.map(&:content), top_k: 5).map { |v| results[v[:doc_id]] }.map(&:content)

0 commit comments

Comments
 (0)