-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExcel2YAML.py
executable file
·140 lines (123 loc) · 4.91 KB
/
Excel2YAML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import xlrd
import re
import os, sys, os.path
import csv, yaml
import numpy as np
from XLSLoader import XLSLoader
#
# Some portions based on a recipe by Bryan Niederberger from
# the ASPN Python cookbook, under the Python license:
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/483742
# This code is released under the Python license as well.
# -- Philip (flip) Kromer [email protected]
#
#
# Read excel sheet into list of 2-d arrays
#
def xlrd_xls2array(infilename):
""" Returns a list of sheets; each sheet is a dict containing
* sheet_name: unicode string naming that sheet
* sheet_data: 2-D table holding the converted cells of that sheet
"""
book = xlrd.open_workbook(infilename)
sheets = []
formatter = lambda t, v: format_excelval(book,t,v,False)
for sheet_name in book.sheet_names():
raw_sheet = book.sheet_by_name(sheet_name)
data = []
for row in range(raw_sheet.nrows):
(types, values) = (raw_sheet.row_types(row), raw_sheet.row_values(row))
data.append(list(map(formatter, types, values)))
sheets.append({ 'sheet_name': sheet_name, 'sheet_data': data })
return sheets
def tupledate_to_isodate(tupledate):
"""
Turns a gregorian (year, month, day, hour, minute, nearest_second) into a
standard YYYY-MM-DDTHH:MM:SS ISO date. If the date part is all zeros, it's
assumed to be a time; if the time part is all zeros it's assumed to be a date;
if all of it is zeros it's taken to be a time, specifically 00:00:00 (midnight).
Note that datetimes of midnight will come back as date-only strings. A date
of month=0 and day=0 is meaningless, so that part of the coercion is safe.
For more on the hairy nature of Excel date/times see http://www.lexicon.net/sjmachin/xlrd.html
"""
(y,m,d, hh,mm,ss) = tupledate
nonzero = lambda n: n!=0
date = "%04d-%02d-%02d" % (y,m,d) if filter(nonzero, (y,m,d)) else ''
time = "T%02d:%02d:%02d" % (hh,mm,ss) if filter(nonzero, (hh,mm,ss)) or not date else ''
return date+time
def format_excelval(book, type, value, wanttupledate):
""" Clean up the incoming excel data """
## Data Type Codes:
## EMPTY 0
## TEXT 1 a Unicode string
## NUMBER 2 float
## DATE 3 float
## BOOLEAN 4 int; 1 means TRUE, 0 means FALSE
## ERROR 5
returnrow = []
if type == 2: # TEXT
if value == int(value): value = int(value)
elif type == 3: # NUMBER
datetuple = xlrd.xldate_as_tuple(value, book.datemode)
value = datetuple if wanttupledate else tupledate_to_isodate(datetuple)
elif type == 5: # ERROR
value = xlrd.error_text_from_code[value]
return value
#
# Save to CSV
#
def camelize(s):
"""Makes a reasonable attempt at turning an arbitrary string
into an identifier-safe CamelCasedString"""
h = unicode(s)
h = re.sub(r'(?:[_\s]+)([a-z])',
lambda m: m.group(1).upper(), h)
h = re.sub(r'[\-\.]+', '_', h)
h = re.sub(r'\W', '', h)
return h
def utf8ize(l):
"""Make string-like things into utf-8, leave other things alone
"""
return [unicode(s).encode("utf-8") if hasattr(s,'encode') else s for s in l]
def dump_csv(table, outdir, outfilename):
stream = file(os.path.join(outdir, outfilename), 'wb')
csvout = csv.writer(stream, delimiter=',', doublequote=False, escapechar='\\')
csvout.writerows( list(map(utf8ize, table)) )
stream.close()
def save_csv_tables(tables, outdir, outfilebase):
for (sheet_idx, sheet) in enumerate(tables):
outfilename = "%s_%d_%s.csv" % (outfilebase, sheet_idx, camelize(sheet['sheet_name']))
dump_csv(sheet['sheet_data'], outdir, outfilename)
def dump_yaml(tables, outdir, outfilename):
stream = open(os.path.join(outdir, outfilename+'.yaml'), 'w')
yaml.dump(tables, stream, allow_unicode=True)
stream.close()
#
# Process files listed on command line, or all .xls files in current dir if no
# args given
#
# re_excelfilename = re.compile(r'(\.xls)$')
# try: args = sys.argv[1:]
# except: args = []
# if len(args) < 1:
# infilenames = filter(re_excelfilename.search, os.listdir("."))
# infilenames.sort()
# else:
# infilenames = args
# for infilename in infilenames:
# tables = xlrd_xls2array(infilename)
# (outdir, infilebase) = os.path.split(infilename)
# outfilebase = re_excelfilename.sub('', infilebase)
# #..
# yaml_data = format_yaml(tables)
# save_csv_tables(tables, outdir, outfilebase)
# dump_yaml (tables, outdir, outfilebase)
infilename = "Input.xls"
tables = xlrd_xls2array(infilename)
(outdir, infilebase) = os.path.split(infilename)
re_excelfilename = re.compile(r'(\.xls)$')
outfilebase = re_excelfilename.sub('', infilebase)
SimulationData=XLSLoader(infilebase, tables)
dump_yaml(SimulationData.getData(),outdir, outfilebase)