diff --git a/Multimodal/Idefics_LaVague_notebook.ipynb b/Multimodal/Idefics_LaVague_notebook.ipynb
new file mode 100644
index 0000000..776b666
--- /dev/null
+++ b/Multimodal/Idefics_LaVague_notebook.ipynb
@@ -0,0 +1,4848 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "57cUBU_kW8YI"
+ },
+ "source": [
+ "# Automatic form filling with LaVague\n",
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "This notebook shows how one can combine Hugging Face [Idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) model with LaVague to create an agent that can take a CV, perform OCR and apply to jobs automatically by filling a candidate form.\n",
+ "\n",
+ "You can see it in action below:\n",
+ "\n",
+ "\n",
+ "\n",
+ "You can run this example directly with a [CLI script available here](https://github.com/lavague-ai/LaVague/blob/main/examples/idefics_example.py).\n",
+ "\n",
+ "\n",
+ "This notebook will go through this example step by step to get into more details."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RBcpVSR6fwT-"
+ },
+ "source": [
+ "## Pre-requisites\n",
+ "\n",
+ "**Note**: We use OpenAI's models, for the embedding, LLM and Vision model. You will need to set the OPENAI_API_KEY variable in your local environment with a valid API key for this example to work.\n",
+ "\n",
+ "If you don't have an OpenAI API key, please [get one here](https://platform.openai.com/docs/quickstart/developer-quickstart).\n",
+ "\n",
+ "You can also [get a Hugging Face token here](https://huggingface.co/docs/hub/security-tokens)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rAFBONJcd8mI"
+ },
+ "source": [
+ "# Installation\n",
+ "\n",
+ "For this example, we will use Hugging Face Inference API, OpenAI API, and LaVague."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "E6TVyo2uGrJq",
+ "outputId": "35afd8ec-ddc2-4cdb-96f3-839796b1f907"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting text-generation\n",
+ " Downloading text_generation-0.7.0-py3-none-any.whl (12 kB)\n",
+ "Collecting lavague\n",
+ " Downloading lavague-1.0.23.post2-py3-none-any.whl (8.2 kB)\n",
+ "Requirement already satisfied: aiohttp<4.0,>=3.8 in /usr/local/lib/python3.10/dist-packages (from text-generation) (3.9.5)\n",
+ "Requirement already satisfied: huggingface-hub<1.0,>=0.12 in /usr/local/lib/python3.10/dist-packages (from text-generation) (0.23.0)\n",
+ "Requirement already satisfied: pydantic<3,>2 in /usr/local/lib/python3.10/dist-packages (from text-generation) (2.7.1)\n",
+ "Collecting lavague-contexts-openai<0.2.0,>=0.1.1 (from lavague)\n",
+ " Downloading lavague_contexts_openai-0.1.2-py3-none-any.whl (2.4 kB)\n",
+ "Collecting lavague-core<0.2.0,>=0.1.1 (from lavague)\n",
+ " Downloading lavague_core-0.1.8-py3-none-any.whl (27 kB)\n",
+ "Collecting lavague-drivers-selenium<0.2.0,>=0.1.1 (from lavague)\n",
+ " Downloading lavague_drivers_selenium-0.1.3-py3-none-any.whl (4.4 kB)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (1.3.1)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (23.2.0)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (1.4.1)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (6.0.5)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (1.9.4)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0,>=3.8->text-generation) (4.0.3)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (3.14.0)\n",
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (2023.6.0)\n",
+ "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (24.0)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (6.0.1)\n",
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (2.31.0)\n",
+ "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (4.66.4)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.12->text-generation) (4.11.0)\n",
+ "Collecting llama-index-embeddings-openai<0.2.0,>=0.1.9 (from lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_embeddings_openai-0.1.10-py3-none-any.whl (6.2 kB)\n",
+ "Collecting llama-index-llms-azure-openai<0.2.0,>=0.1.8 (from lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_llms_azure_openai-0.1.8-py3-none-any.whl (4.9 kB)\n",
+ "Collecting llama-index-llms-openai<0.2.0,>=0.1.9 (from lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_llms_openai-0.1.20-py3-none-any.whl (11 kB)\n",
+ "Collecting llama-index-multi-modal-llms-azure-openai<0.2.0,>=0.1.4 (from lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_multi_modal_llms_azure_openai-0.1.4-py3-none-any.whl (3.7 kB)\n",
+ "Collecting llama-index-multi-modal-llms-openai<0.2.0,>=0.1.6 (from lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_multi_modal_llms_openai-0.1.6-py3-none-any.whl (5.8 kB)\n",
+ "Requirement already satisfied: ipython<8.0.0,>=7.34.0 in /usr/local/lib/python3.10/dist-packages (from lavague-core<0.2.0,>=0.1.1->lavague) (7.34.0)\n",
+ "Collecting langchain<0.2.0,>=0.1.20 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading langchain-0.1.20-py3-none-any.whl (1.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m44.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting llama-index<0.11.0,>=0.10.19 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index-0.10.38-py3-none-any.whl (6.8 kB)\n",
+ "Collecting llama-index-retrievers-bm25<0.2.0,>=0.1.3 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_retrievers_bm25-0.1.3-py3-none-any.whl (2.9 kB)\n",
+ "Collecting lxml<6.0.0,>=5.1.1 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading lxml-5.2.2-cp310-cp310-manylinux_2_28_x86_64.whl (5.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.0/5.0 MB\u001b[0m \u001b[31m80.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: msgpack<2.0.0,>=1.0.8 in /usr/local/lib/python3.10/dist-packages (from lavague-core<0.2.0,>=0.1.1->lavague) (1.0.8)\n",
+ "Collecting trafilatura<2.0.0,>=1.9.0 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading trafilatura-1.9.0-py3-none-any.whl (1.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m68.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting selenium<5.0.0,>=4.18.1 (from lavague-drivers-selenium<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading selenium-4.21.0-py3-none-any.whl (9.5 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.5/9.5 MB\u001b[0m \u001b[31m90.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>2->text-generation) (0.6.0)\n",
+ "Requirement already satisfied: pydantic-core==2.18.2 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>2->text-generation) (2.18.2)\n",
+ "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (67.7.2)\n",
+ "Collecting jedi>=0.16 (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m81.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (4.4.2)\n",
+ "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.7.5)\n",
+ "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (5.7.1)\n",
+ "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (3.0.43)\n",
+ "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (2.16.1)\n",
+ "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.2.0)\n",
+ "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.1.7)\n",
+ "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (4.9.0)\n",
+ "Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague) (2.0.30)\n",
+ "Collecting dataclasses-json<0.7,>=0.5.7 (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading dataclasses_json-0.6.6-py3-none-any.whl (28 kB)\n",
+ "Collecting langchain-community<0.1,>=0.0.38 (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading langchain_community-0.0.38-py3-none-any.whl (2.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m92.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting langchain-core<0.2.0,>=0.1.52 (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading langchain_core-0.1.52-py3-none-any.whl (302 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.9/302.9 kB\u001b[0m \u001b[31m27.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting langchain-text-splitters<0.1,>=0.0.1 (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading langchain_text_splitters-0.0.2-py3-none-any.whl (23 kB)\n",
+ "Collecting langsmith<0.2.0,>=0.1.17 (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading langsmith-0.1.62-py3-none-any.whl (122 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m122.3/122.3 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague) (1.25.2)\n",
+ "Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague) (8.3.0)\n",
+ "Collecting llama-index-agent-openai<0.3.0,>=0.1.4 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_agent_openai-0.2.5-py3-none-any.whl (13 kB)\n",
+ "Collecting llama-index-cli<0.2.0,>=0.1.2 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_cli-0.1.12-py3-none-any.whl (26 kB)\n",
+ "Collecting llama-index-core<0.11.0,>=0.10.38 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_core-0.10.38.post2-py3-none-any.whl (15.4 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m72.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting llama-index-indices-managed-llama-cloud<0.2.0,>=0.1.2 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_indices_managed_llama_cloud-0.1.6-py3-none-any.whl (6.7 kB)\n",
+ "Collecting llama-index-legacy<0.10.0,>=0.9.48 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_legacy-0.9.48-py3-none-any.whl (2.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m77.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting llama-index-program-openai<0.2.0,>=0.1.3 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_program_openai-0.1.6-py3-none-any.whl (5.2 kB)\n",
+ "Collecting llama-index-question-gen-openai<0.2.0,>=0.1.2 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_question_gen_openai-0.1.3-py3-none-any.whl (2.9 kB)\n",
+ "Collecting llama-index-readers-file<0.2.0,>=0.1.4 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_readers_file-0.1.22-py3-none-any.whl (36 kB)\n",
+ "Collecting llama-index-readers-llama-parse<0.2.0,>=0.1.2 (from llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_index_readers_llama_parse-0.1.4-py3-none-any.whl (2.5 kB)\n",
+ "Collecting azure-identity<2.0.0,>=1.15.0 (from llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading azure_identity-1.16.0-py3-none-any.whl (166 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.1/166.1 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting httpx (from llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting rank-bm25<0.3.0,>=0.2.2 (from llama-index-retrievers-bm25<0.2.0,>=0.1.3->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading rank_bm25-0.2.2-py3-none-any.whl (8.6 kB)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub<1.0,>=0.12->text-generation) (3.3.2)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub<1.0,>=0.12->text-generation) (3.7)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub<1.0,>=0.12->text-generation) (2.0.7)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub<1.0,>=0.12->text-generation) (2024.2.2)\n",
+ "Collecting trio~=0.17 (from selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading trio-0.25.1-py3-none-any.whl (467 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m467.7/467.7 kB\u001b[0m \u001b[31m42.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting trio-websocket~=0.9 (from selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading trio_websocket-0.11.1-py3-none-any.whl (17 kB)\n",
+ "Collecting courlan>=1.1.0 (from trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading courlan-1.1.0-py3-none-any.whl (33 kB)\n",
+ "Collecting htmldate>=1.8.1 (from trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading htmldate-1.8.1-py3-none-any.whl (31 kB)\n",
+ "Collecting justext>=3.0.0 (from trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading jusText-3.0.1-py2.py3-none-any.whl (837 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m837.8/837.8 kB\u001b[0m \u001b[31m63.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting lxml<6.0.0,>=5.1.1 (from lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading lxml-5.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.1/5.1 MB\u001b[0m \u001b[31m100.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting azure-core>=1.23.0 (from azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading azure_core-1.30.1-py3-none-any.whl (193 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m193.4/193.4 kB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: cryptography>=2.5 in /usr/local/lib/python3.10/dist-packages (from azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (42.0.7)\n",
+ "Collecting msal>=1.24.0 (from azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading msal-1.28.0-py3-none-any.whl (102 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.2/102.2 kB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting msal-extensions>=0.3.0 (from azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading msal_extensions-1.1.0-py3-none-any.whl (19 kB)\n",
+ "Requirement already satisfied: babel>=2.11.0 in /usr/local/lib/python3.10/dist-packages (from courlan>=1.1.0->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (2.15.0)\n",
+ "Collecting tld>=0.13 (from courlan>=1.1.0->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading tld-0.13-py2.py3-none-any.whl (263 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m263.8/263.8 kB\u001b[0m \u001b[31m30.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting marshmallow<4.0.0,>=3.18.0 (from dataclasses-json<0.7,>=0.5.7->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading marshmallow-3.21.2-py3-none-any.whl (49 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting typing-inspect<1,>=0.4.0 (from dataclasses-json<0.7,>=0.5.7->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
+ "Collecting dateparser>=1.1.2 (from htmldate>=1.8.1->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading dateparser-1.2.0-py2.py3-none-any.whl (294 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.0/295.0 kB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from htmldate>=1.8.1->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (2.8.2)\n",
+ "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.8.4)\n",
+ "Requirement already satisfied: lxml[html_clean]>=4.4.2 in /usr/local/lib/python3.10/dist-packages (from justext>=3.0.0->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (4.9.4)\n",
+ "Collecting jsonpatch<2.0,>=1.33 (from langchain-core<0.2.0,>=0.1.52->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading jsonpatch-1.33-py2.py3-none-any.whl (12 kB)\n",
+ "Collecting packaging>=20.9 (from huggingface-hub<1.0,>=0.12->text-generation)\n",
+ " Downloading packaging-23.2-py3-none-any.whl (53 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting orjson<4.0.0,>=3.9.14 (from langsmith<0.2.0,>=0.1.17->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting openai>=1.14.0 (from llama-index-agent-openai<0.3.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading openai-1.30.2-py3-none-any.whl (320 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m320.7/320.7 kB\u001b[0m \u001b[31m38.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting deprecated>=1.2.9.3 (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading Deprecated-1.2.14-py2.py3-none-any.whl (9.6 kB)\n",
+ "Collecting dirtyjson<2.0.0,>=1.0.8 (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading dirtyjson-1.0.8-py3-none-any.whl (25 kB)\n",
+ "Collecting llamaindex-py-client<0.2.0,>=0.1.18 (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llamaindex_py_client-0.1.19-py3-none-any.whl (141 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: nest-asyncio<2.0.0,>=1.5.8 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (1.6.0)\n",
+ "Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (3.3)\n",
+ "Requirement already satisfied: nltk<4.0.0,>=3.8.1 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (3.8.1)\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (2.0.3)\n",
+ "Requirement already satisfied: pillow>=9.0.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (9.4.0)\n",
+ "Collecting tiktoken>=0.3.3 (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading tiktoken-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m70.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: wrapt in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (1.14.1)\n",
+ "Requirement already satisfied: beautifulsoup4<5.0.0,>=4.12.3 in /usr/local/lib/python3.10/dist-packages (from llama-index-readers-file<0.2.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (4.12.3)\n",
+ "Collecting pypdf<5.0.0,>=4.0.1 (from llama-index-readers-file<0.2.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading pypdf-4.2.0-py3-none-any.whl (290 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m32.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting striprtf<0.0.27,>=0.0.26 (from llama-index-readers-file<0.2.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading striprtf-0.0.26-py3-none-any.whl (6.9 kB)\n",
+ "Collecting llama-parse<0.5.0,>=0.4.0 (from llama-index-readers-llama-parse<0.2.0,>=0.1.2->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading llama_parse-0.4.3-py3-none-any.whl (7.7 kB)\n",
+ "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.7.0)\n",
+ "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0.0,>=7.34.0->lavague-core<0.2.0,>=0.1.1->lavague) (0.2.13)\n",
+ "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague) (3.0.3)\n",
+ "Requirement already satisfied: sortedcontainers in /usr/local/lib/python3.10/dist-packages (from trio~=0.17->selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague) (2.4.0)\n",
+ "Collecting outcome (from trio~=0.17->selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading outcome-1.3.0.post0-py2.py3-none-any.whl (10 kB)\n",
+ "Requirement already satisfied: sniffio>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from trio~=0.17->selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague) (1.3.1)\n",
+ "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from trio~=0.17->selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague) (1.2.1)\n",
+ "Collecting wsproto>=0.14 (from trio-websocket~=0.9->selenium<5.0.0,>=4.18.1->lavague-drivers-selenium<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading wsproto-1.2.0-py3-none-any.whl (24 kB)\n",
+ "Requirement already satisfied: pysocks!=1.5.7,<2.0,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from urllib3<3,>=1.21.1->requests->huggingface-hub<1.0,>=0.12->text-generation) (1.7.1)\n",
+ "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (3.7.1)\n",
+ "Collecting httpcore==1.* (from httpx->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting h11<0.15,>=0.13 (from httpcore==1.*->httpx->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: six>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from azure-core>=1.23.0->azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (1.16.0)\n",
+ "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4<5.0.0,>=4.12.3->llama-index-readers-file<0.2.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (2.5)\n",
+ "Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.10/dist-packages (from cryptography>=2.5->azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (1.16.0)\n",
+ "Requirement already satisfied: pytz in /usr/local/lib/python3.10/dist-packages (from dateparser>=1.1.2->htmldate>=1.8.1->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (2023.4)\n",
+ "Requirement already satisfied: regex!=2019.02.19,!=2021.8.27 in /usr/local/lib/python3.10/dist-packages (from dateparser>=1.1.2->htmldate>=1.8.1->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (2023.12.25)\n",
+ "Requirement already satisfied: tzlocal in /usr/local/lib/python3.10/dist-packages (from dateparser>=1.1.2->htmldate>=1.8.1->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague) (5.2)\n",
+ "Collecting jsonpointer>=1.9 (from jsonpatch<2.0,>=1.33->langchain-core<0.2.0,>=0.1.52->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading jsonpointer-2.4-py2.py3-none-any.whl (7.8 kB)\n",
+ "\u001b[33mWARNING: lxml 4.9.4 does not provide the extra 'html_clean'\u001b[0m\u001b[33m\n",
+ "\u001b[0mINFO: pip is looking at multiple versions of lxml[html-clean] to determine which version is compatible with other requirements. This could take a while.\n",
+ "Collecting lxml[html_clean]>=4.4.2 (from justext>=3.0.0->trafilatura<2.0.0,>=1.9.0->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading lxml-5.2.1-cp310-cp310-manylinux_2_28_x86_64.whl (5.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.0/5.0 MB\u001b[0m \u001b[31m122.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Downloading lxml-5.2.0-cp310-cp310-manylinux_2_28_x86_64.whl (5.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.0/5.0 MB\u001b[0m \u001b[31m107.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h\u001b[33mWARNING: lxml 5.1.1 does not provide the extra 'html_clean'\u001b[0m\u001b[33m\n",
+ "\u001b[0mRequirement already satisfied: PyJWT[crypto]<3,>=1.0.0 in /usr/lib/python3/dist-packages (from msal>=1.24.0->azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (2.3.0)\n",
+ "Collecting portalocker<3,>=1.0 (from msal-extensions>=0.3.0->azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\n",
+ "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (8.1.7)\n",
+ "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (1.4.2)\n",
+ "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai>=1.14.0->llama-index-agent-openai<0.3.0,>=0.1.4->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (1.7.0)\n",
+ "Collecting mypy-extensions>=0.3.0 (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain<0.2.0,>=0.1.20->lavague-core<0.2.0,>=0.1.1->lavague)\n",
+ " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
+ "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-index-core<0.11.0,>=0.10.38->llama-index<0.11.0,>=0.10.19->lavague-core<0.2.0,>=0.1.1->lavague) (2024.1)\n",
+ "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.12->cryptography>=2.5->azure-identity<2.0.0,>=1.15.0->llama-index-llms-azure-openai<0.2.0,>=0.1.8->lavague-contexts-openai<0.2.0,>=0.1.1->lavague) (2.22)\n",
+ "Installing collected packages: striprtf, dirtyjson, tld, rank-bm25, pypdf, portalocker, packaging, outcome, orjson, mypy-extensions, lxml, jsonpointer, jedi, h11, deprecated, wsproto, typing-inspect, trio, tiktoken, marshmallow, jsonpatch, httpcore, dateparser, courlan, azure-core, trio-websocket, text-generation, langsmith, justext, httpx, htmldate, dataclasses-json, trafilatura, selenium, openai, msal, llamaindex-py-client, langchain-core, msal-extensions, llama-index-legacy, llama-index-core, langchain-text-splitters, langchain-community, llama-parse, llama-index-retrievers-bm25, llama-index-readers-file, llama-index-llms-openai, llama-index-indices-managed-llama-cloud, llama-index-embeddings-openai, langchain, azure-identity, llama-index-readers-llama-parse, llama-index-multi-modal-llms-openai, llama-index-llms-azure-openai, llama-index-cli, llama-index-agent-openai, llama-index-program-openai, llama-index-multi-modal-llms-azure-openai, llama-index-question-gen-openai, llama-index, lavague-core, lavague-drivers-selenium, lavague-contexts-openai, lavague\n",
+ " Attempting uninstall: packaging\n",
+ " Found existing installation: packaging 24.0\n",
+ " Uninstalling packaging-24.0:\n",
+ " Successfully uninstalled packaging-24.0\n",
+ " Attempting uninstall: lxml\n",
+ " Found existing installation: lxml 4.9.4\n",
+ " Uninstalling lxml-4.9.4:\n",
+ " Successfully uninstalled lxml-4.9.4\n",
+ "Successfully installed azure-core-1.30.1 azure-identity-1.16.0 courlan-1.1.0 dataclasses-json-0.6.6 dateparser-1.2.0 deprecated-1.2.14 dirtyjson-1.0.8 h11-0.14.0 htmldate-1.8.1 httpcore-1.0.5 httpx-0.27.0 jedi-0.19.1 jsonpatch-1.33 jsonpointer-2.4 justext-3.0.1 langchain-0.1.20 langchain-community-0.0.38 langchain-core-0.1.52 langchain-text-splitters-0.0.2 langsmith-0.1.62 lavague-1.0.23.post2 lavague-contexts-openai-0.1.2 lavague-core-0.1.8 lavague-drivers-selenium-0.1.3 llama-index-0.10.38 llama-index-agent-openai-0.2.5 llama-index-cli-0.1.12 llama-index-core-0.10.38.post2 llama-index-embeddings-openai-0.1.10 llama-index-indices-managed-llama-cloud-0.1.6 llama-index-legacy-0.9.48 llama-index-llms-azure-openai-0.1.8 llama-index-llms-openai-0.1.20 llama-index-multi-modal-llms-azure-openai-0.1.4 llama-index-multi-modal-llms-openai-0.1.6 llama-index-program-openai-0.1.6 llama-index-question-gen-openai-0.1.3 llama-index-readers-file-0.1.22 llama-index-readers-llama-parse-0.1.4 llama-index-retrievers-bm25-0.1.3 llama-parse-0.4.3 llamaindex-py-client-0.1.19 lxml-5.1.1 marshmallow-3.21.2 msal-1.28.0 msal-extensions-1.1.0 mypy-extensions-1.0.0 openai-1.30.2 orjson-3.10.3 outcome-1.3.0.post0 packaging-23.2 portalocker-2.8.2 pypdf-4.2.0 rank-bm25-0.2.2 selenium-4.21.0 striprtf-0.0.26 text-generation-0.7.0 tiktoken-0.7.0 tld-0.13 trafilatura-1.9.0 trio-0.25.1 trio-websocket-0.11.1 typing-inspect-0.9.0 wsproto-1.2.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install text-generation lavague"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "tvya0IUyny4i"
+ },
+ "source": [
+ "We will need to set our OpenAI Key. If you are running this as a Colab, you can provide it through Colab secrets (see the key icon on the left-hand side of the Colab notebook) named 'OPENAI_API_KEY' and then convert it to an environment variable with the same name."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "szM8iq3LINtq",
+ "outputId": "62b8f8e3-ce4d-4f45-eb7c-b488468d374d"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/pydantic/_internal/_fields.py:160: UserWarning: Field \"model_id\" has conflict with protected namespace \"model_\".\n",
+ "\n",
+ "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "\n",
+ "# Check if running in Google Colab\n",
+ "try:\n",
+ " from google.colab import userdata\n",
+ " IN_COLAB = True\n",
+ "except ImportError:\n",
+ " IN_COLAB = False\n",
+ "\n",
+ "if IN_COLAB:\n",
+ " fetch_secret = userdata.get\n",
+ "else:\n",
+ " fetch_secret = os.getenv\n",
+ "\n",
+ "import yaml\n",
+ "from text_generation import Client\n",
+ "\n",
+ "os.environ[\"OPENAI_API_KEY\"] = fetch_secret(\"OPENAI_API_KEY\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z07ySHqPqbL6"
+ },
+ "source": [
+ "# OCR with Hugging Face Idefics2-8b\n",
+ "\n",
+ "We will use here Hugging Face Inference API to leverage the model Idefics2-8b, an open-source Multimodal LLM, in order to extract the description of the candidate from her resume."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "9c7PL5Rjo256"
+ },
+ "outputs": [],
+ "source": [
+ "from text_generation import Client\n",
+ "import os\n",
+ "\n",
+ "BASE_URL = \"https://api-inference.huggingface.co/models/\"\n",
+ "BASE_MODEL= \"HuggingFaceM4/idefics2-8b\"\n",
+ "SYSTEM_PROMPT = \"System: The following is a conversation between Idefics2, a highly knowledgeable and intelligent visual AI assistant created by Hugging Face, referred to as Assistant, and a human user called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about them, but it cannot generate images. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.\\nAssistant: Hello, I'm Idefics2, Huggingface's latest multimodal assistant. How can I help you?\\n\"\n",
+ "\n",
+ "class HuggingFaceMMLLM:\n",
+ " def __init__(self, hf_api_key=None, model=BASE_MODEL, base_url = BASE_URL):\n",
+ " if hf_api_key is None:\n",
+ " hf_api_key = fetch_secret(\"HF_TOKEN\")\n",
+ " if hf_api_key is None:\n",
+ " raise ValueError(\"HF_TOKEN is not set\")\n",
+ "\n",
+ " api_url = base_url + model\n",
+ "\n",
+ " self.client = Client(\n",
+ " base_url=api_url,\n",
+ " headers={\"x-use-cache\": \"0\", \"Authorization\": f\"Bearer {hf_api_key}\"},\n",
+ " )\n",
+ "\n",
+ " def upload_image(self, file_path, cloudinary_config=None):\n",
+ " import cloudinary\n",
+ " import cloudinary.uploader\n",
+ " if cloudinary_config is None:\n",
+ " cloudinary_config = {\n",
+ " \"cloud_name\": fetch_secret(\"CLOUDINARY_CLOUD_NAME\"),\n",
+ " \"api_key\": fetch_secret(\"CLOUDINARY_API_KEY\"),\n",
+ " \"api_secret\": fetch_secret(\"CLOUDINARY_API_SECRET\"),\n",
+ " }\n",
+ " if None in cloudinary_config.values():\n",
+ " raise ValueError(\"CLOUDINARY_CLOUD_NAME, CLOUDINARY_API_KEY, or CLOUDINARY_API_SECRET is not set\")\n",
+ "\n",
+ " cloudinary.config(**cloudinary_config)\n",
+ " img_url = cloudinary.uploader.upload(file_path)[\"url\"]\n",
+ " return img_url\n",
+ "\n",
+ " def complete(self, query, file_path=None, url=None):\n",
+ " if file_path is None and url is None:\n",
+ " raise ValueError(\"Either file_path or url must be provided\")\n",
+ "\n",
+ " generation_args = {\n",
+ " \"max_new_tokens\": 512,\n",
+ " \"repetition_penalty\": 1.1,\n",
+ " \"do_sample\": False,\n",
+ " }\n",
+ "\n",
+ " if file_path:\n",
+ " img_url = self.upload_image(file_path)\n",
+ " else:\n",
+ " img_url = url\n",
+ "\n",
+ " prompt_with_image = SYSTEM_PROMPT + f\"User: {query}\\nAssistant:\"\n",
+ " generated_text = self.client.generate(prompt=prompt_with_image, **generation_args).generated_text\n",
+ "\n",
+ " return generated_text\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3W4cl7swscfV"
+ },
+ "source": [
+ "We can see the resume used below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "DEl-p1eHsVVj",
+ "outputId": "4a2ddae3-3f3e-4784-a117-b3f2c86ed2a6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAQICAMAAADC9k+PAAABs1BMVEX////9/f0AAAD7+/v5+fnr6+wJCgojJysgJCj29/f09PTv7+8cICQ8QEM6PUFHSk1UV1pRVFfy8vNCRUg/QkZXWl1MT1JER0sxNTheYWRJTVDCw8Td3d4qLjIVGh4vMjbs7e3R0tMzNzrh4eLx8fHj4+S9vr8sMDQ1OTwYHSEmKi6QkpSNj5E3Oz7f3+BOUVXa29yFh4nW19gTFxuIiozPz9DY2dpbXmEoLC99f4FjZWjl5eacnqDo6OlZXF/m5+ejpabMzc7Ky8zp6upgY2ZlZ2rExcafoKKvsLLHyMm/wcKhoqS6vL2KjI90d3mAg4VqbW+trrCSlJalp6iChYd6fX+YmpuUlpjV1dYLDxOanJ2nqatsb3GrrK5naWzIycoQFRl5e33T1NV/gYNucXOztLVwcnVoa262t7m0trdxdHaxsrRzdXgOEhepq6y3ubp3eXy5ursDBwyWmJp2eXtqeotmd4hjdYZcb4Fufo9gcoTQ1dtygpF4h5ba3uKSnqp8ipl1hJTL0NaJlqO8w8vCydCNmqfV2t+1vsajrbeFk6GqtL2wucKXo6+Bj52dqLNUZ3ruwceJAAIRiklEQVR42uzVQWrDMBRF0f8r7EG9jk5LRl1A97+ohqKEJMQPMgkenAMCYSx7oivVB7BLICAQEAgIBN5pBrICd24DWU/bAlxtp/U2kKW6gKlreQhkNDCNWtwgsKcFAgIBgYBAYJ9AIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgXAk3XvP+/lu63Eel/mcvqDnqkQgHMTc70/i+B+vfKfH2XVN/l0mEA4sn/Bd/btVz7vg+2dOq0f1XNoVdX1+5ZcEwh9518HWxhFE32bPn9ohCQFCSHA0gTjROTBddDC9WtgYg8AUB4xjx/7/X3bmVgWF2AlpKBnbum0zuyvNu5mtfiok0LrNOs0fZAYorAh94364YX7I/BMy1gnJCRKDFzCkZp7+ONyzEaGwLk28LFRHJKUGXrZjNg5O19XdK65rfDIAES79RcaaiYJ/TlIZ/f66/6z5fnxNxfTKej1JrIWNe0MKRbJnBmiNtrACa+AgnwmjbQ2SExggUmf0hG4OexpCqwWocaBMhMR0/BVWakqyIe4Xpw+S+SQAUqrUf719frwEeZ/Ul1YhWidQKS0tNtgHROjF7wsAxshqh8RCSGFDd6Zlhh/++VbJ0eUB2UYWZHq5DwogN1gdMShja5TwhNOuOUgkT18JF0wdJH2SWZ+dzvlIrMR6vTYT8vlyu1RCV1sNMDhmAmAegacBkL/2q04mFK2dP1pHHj+yE+jYJBpe+PstSLJbVdRzMFBmQQTO16j/gcqyIAJzYeBsGwbeZDAUDUVj75PVnupox8KoHy8ONqP11X3AeU0oGJ8GbmPx+LiyIFjvjTafCWyGb+K18Q5gNyrk+snOOlYagERVvCujMHe2shivXX0bDcWHVIlgdW2oA5GGPqwQQEhvw8GaUCNWuqK11Up4tvtlNDg1UhcN7j4dC7Lcnc1m93YfY0FKvUY21t0/W46VS/f9WQsys5ctoS+zG0PGdwZ/EqeOoyq/ewWJv5EYit6cqunn95BlP0Ka0l8PQ1YSQiSWq4ClK/gwVYOGrzAGksZK88aqbIxFsH+XnX4WboCsP4QMX6M9vQ/jk7OMudgIBppeYM9OAKOLQN0uPtWNrMfEZKjF3/UW/toDoL72la/HuuiLjIaBvldAfBuBtucMEEWYqPaLGYyk1yCWlIwD8yf/hjc+7/vSFHgiFsTAOCn16/pHAeS+N2VgMDfm8Xi8p39OSSVWVZtKKGel6/eS+JZfKjHn9Sgyh/5+C9LRrKpKWxuQZbD2eCh9p7KcLIHVGuB6CwZWQhisaYeQGOlNAgNVEcxWSYHbXiS6fMqceDBbA5XrXcPWNVowkcFwPyTmm5KRqkBHzQI6QgL1k7c1CGCvCwh9AZ6l54HPNaQpPow3IFA1oAGC6VQrpMTZCQz0NQ1gPAOJ0CbQEmx9IgCRGHTGPGmz+pEWJHk+NHTel7cgw3cer6K5PwuQeTvtuUdeO1c7AolvAkSRx/4nAJIyVU3OAwChFlhXlQUQ6QLkAwEkDuNlc7hT4LTtGTAQjGAqAwPvg3hr1dfXV9VimFS4pbkTDZ5QTaj5CoOs3GONkVqsxYGRash4IGuH6kO91RKhn4Dp5iEgEZdILFbHPVcIBDVAJFqbFyAMjB5Awh/7CV+/wof4EUQk9IQAopTaYz8KIEJi3Ul7rEwBIApsiub/NEAsj/c+edJ2epkQ8pQBQqhOVyxA/PgSh8D0nmcWq10tggFyNEoA6cXHeiMQCCQxSIBJEkC28SyQ9GF4ET7la7X7a+VQ1TMM1uN9FD11aAkEfAKhTmAh9QpIhDDSNNWIs8UiQATOUzOQBjLjJDTWia8UiGeBSP1/BSDbOY/HqnNVwsD2z7ZlOdZfBRBPgShiphohnjJAJlXXLft1hblYGiBkCBaj/F4fjmO+LeC6WFMNBJAqPG+iBUGJy+YIsGYn0B2CoMLdbVJgNmaI0DI+RJe2zkajnVhrfubOgMXXgAWyIMtx9MQh0X/NLta64m73IaIGMVKih/y2zqZpnBFAokfAf8WCCJxYRYBI3EYzdZnwSQvEXwIQ23LJsSmazt1APmWARJbCdXWZ/heVCJBbc3ZtOxbH1HDnm+AeAk0HnxcaU0kcVsPAbbOBrdTHtc0pGP11a7N1ZqdS8/DG+7NV9Hi+dq54VoDtUci5ZUOc0hRNQ/C28+AtENwApr3nwFoQa96pja3mHQQUYLJdaM/tAXtNHzt72mXNRGK2+RC4opFQlUqP9I5APj2ACE0qWB5l+nUcUVsDRKcXqVSUS+XTX8USDwPEk/3p9vLy8se3B7U2A6aJBztaepG/DCAPCRblDMVSLj2Yd5/1YYDkcytseTBPwgWIwIvq8F5rFomG0dE3QmAjk2ls+eTDRjd9tS8l5FQ82nAJPNsKH7+aHQKmP9VX7wygc3W3P3MLASO8NCDQ8rkPUsDXE+qfSADb50DyqgMYOhD4WFf3tvUt/GeT6BxHy84aJN70h3Zm0LJdPfETJGb3YeDgM+B71/ckLYjQfzTpaHHtjh/0zG8MSHaZDBBOBKTBxDxckAvRZ/kWUM4q7mB4ECDpwjYfY4kSPLkvkNxKZi8NlQLErRU6Ayhj4Pq4fUQ6zDFRKFPIK/Zb6n6XASSfw+0ymGRlQcUFiNtzUdxt++Dir34WA5o4YvRUR+v7w62FzHIRDyfp4g/kP0GA/BYV1v7LN3s2NplePUh/mFEQI4xk0lf65Ur6MCKRCKWC9O9BC/IKhiQysNBmelRF1SRQCxL+ZNJv5DdA5AFivoKg+vwSpfUVGCQ0e/kPrz/Lfz7mLCaVAaQorHItSMR3UJt/70m4T4A+hdQ/FQfceOFNohM0p/sz+Cb7nlH5YmldECiIlhzPP3Q5ztI/rOZ5Kivp912sr9XKiY7vQ7qDznAdRRNwtxh0Zr8uhTPHF9srPw75GB6B5U+klWbb1cXF1XUfkDi5urg63uIxyOb11c3SLSRmVpaqUqlgZsqfN0kCM7svwzWpVKqq/zrLfpN4CCBDBQuCd45KMZt0WeN0byLe1ZRqC9WNbxgkssSCtB8t1aRi8asNbef4p+scXIp2pVK90YlNgpASMbij2noypd9dk6oHVyetFCzkHVFMvno7eDEanrja6v6YmJYQ9wGivvqvx1cXNxMb5BdQaOmyksYgEnPB2o3vv8DvvQo0lb5c8jAqTfyOwIIf/3Dpp2hBRP2dbZk/D8JgoY2OZanoLmE6cNBsOzkVd5ycY3u6LoHkUpdteYlMx1FrjfPA0c+Ub7L/WPPasl63+SMHKccxFVl34Ratr7JnzHIsm1Jtx0n3CEXfAAip/5rtIfvgzvS2RlWNLruVs6LnEOxiEZm7L8dYtO1Y1xFoiCRCds7KM3iXBqhHDbxA2qsdtI+vVUz1XFK83ZtzOGYgUe21cg71O5ezzLEJP2QJQKjebeK8Sy0AydQdCTmopJV0AdEiIf4SSU93LPaXASRqpj1juU1IFyBemtd3bmGgpf/O9Gii2f67PWDSUkleJkq1R4B1O62SUh1Uf7WSlTavQsxIRdK5jN6ruXXnzUuivLuXUOnfAojAJCtl7hZSYmTM8pTwW6lz14JosLr1USMnIIhUs+zSRUcn1QrDbatn7Llrfz5YqrV2NdsMLFNW2jwF3tiWt4TVjrXcAwg58CZ3/kdIRKq86uuzNisJIICoWPfw3wCIrcJ3m3kLYnpJKV+o6NldWuUUl+2sLDDd5EmXAMQkgFjsCLVT/f38zrdYNd1i6dw+yAl967AGm1bOMVmV7XnIb1kQ9fDXU9OcPUgYISutMr1k0dRDiZ3QAGEiiLoVph23vlavyeK4Lkq34obAkNuR95AkvsYuuHASWUeJMHtbMJAmzmK/zWCgzIIYUYvadUJaFgmaFK6ovVgCT/WtX0kAwUIzKYpNH0WATDp3dzanmHe5XO7n+QcAQtAxbctmJdMLJkYN59hdmauJKpvSWae+DRBUsyK+g4F9h+HljZ9chD0mVdi8gAJAPLZjm5bjBusNqvDa4VZapum1XcHOOoTBkOOqBV6ZzOD8yIj6QACxJoCeXFqJtwrvhXKASBwylpoaKxUgv6b/onX62wGybJK6jc515Kk9AiQPtoericEMHmxvH4x3PAgQ22qrHq03TVbqthZyYDhsffULIYx3JMAahfg2QCQaWGmvoEIW1RlbVewY6WKEJGAUXKzQl425ywvTjYxAYrLZjQwunw90Lrl2rRoSWywxwzZjSgPnJY8rXKuQBRYpeWyqr9DvmXuzWAaep5ntCBIVCxB3eI3CbHzJdL6evSwtJg2p/nJMPyFUgCN5Zk7hnCdygOxvB8gGpdvli5vkjORK9Fs+4GLZoR8DSpPfN7mv6BEY+EI8ZlWSvj74q0zlYtUa+CZAILHE6nwNRNwZ3ylIRZji5FkGCOPxjSBiI8ClDKxZHMyyqUADi26aBnYtBneE+nFCxam19JNPx7ixI0BYDXacCcX40Er6T/C5YLX6leSKtSClB/rooVP0U6fryG+tg6CsBD+14Kfgwf3tAOlkD/05DE36vKWBbtbPOqGSDFEOENZoQSRxxFrKr/ob4sm9hEE5GFUZZiqJ71gQDZAd4NzDSGiHJLlrqo3pu54iQIagWmdoJc6dESAddsMmicHAjyzanAca08zRColkr/YePQNUO78OqnxAHQHkGj7d7fKFQuznhcnKdbFoWmKdxl778xT2zx4f76rn882dq89A52c2Evwx8jIAbByrOe1L6uLq+MQbPWN+fXFxcdMNGPvHnxIQCGyebLeTtM6TnU78+6dB/wGAUBleMyid8pbYcwHyoAVhWcPwMUCGSBYBRKJOOzBsl7HjMEB+vwXpNPnFnwSzj3jLAPIKQgPPtW0SZ8Rpx6W+iaCJtNv6CAnXk3oDA6fUOtb6fRWbtVwsSgaIXbNQ7LcoroPYJz3DbYyIdwS9ynWxJKZqDQROXndDAovV63tjw2isvdof9qxjvq0vbwt8cbMdOA7uDY+v0ddaf3h0yRly6mB4cK82BDT0f+weewN/febtdZUqPNuUPRxb//e/j78dIGvuNFB/w6iihvH9jvwB/MPvACTHKwukl94CQLgSexeSG66UymN+x8UiAQwr6wNwSQE7KiG4AVaZi0U8lPHVcYsJHFPIyei5a6OXtfgIBrY54yW0IYwRQK5oyi7n0VBhlJldo0w7PQkDeQuiyHYcBgo5iwKVChDS/NiP8EUHl3h+ut0Q2Ej55DQBJwjs7MAdkkAtEzcCDaTvlKcsbOkGNcRvMd/cAnypxV4NDfEa4Gv7CHzu8v33XayOJi+R5TBZThMZE7705fsWhGUVASJkkP21q5VsNnt0GLf1LOm3AQLpFtwGZu/YgmSPFP/UpzSLHfk1QHpyHp7G0tBy6HdmQQQQAq6BDQZXNdjcmKkpYqiNgBjY9TJwkEuTeEeTVdcIUQCInr02aQmkcgECid0uA3II18OuJTQwF0uC/eJeYDUVYC8Ml9GBYB8Q3gVvNam/LNxmQsN1fKwS6Gs+B76OInMAP+aCYi41rcR1JSDxB6nCAGJgK5cmpcmTmfsIyW+VxwCEzZGVc4iokNdOfHcdpMV98R8C63cEirzS8gJkA0TZdneJPVWsFCBnVEXRsm3DwGQzWa/YJM9iW9U8EFFYexYziVNCYsjDM24FugvlV9I1kX15Rr2vWIAIgQtaUDVwoa29gXdh9eho71RGAT7Wb4Hp3tZkbSNkzdbR4TnQUfPmOnqt/VkSEiKb/KX+7XBmEjc75LZ6fZdB3lKx/j8ASAsviGtitXDfMZ8eDZD0GFPaa1pWFuJ7K+mNnOC8yAPEM+aSUum70OTvAMgnbUEQ0gDJ59jL+NFWY/FBGg7R2KiVByNbkDzrUFxJ56XOQxgFgHAaMcrKdrHim5AaIO5GguYhCDnaZe6QcxTKcnLDICZrGiG6r95NpL/gubchMTPepk/+SHxu80NiIdhldwMJz21guc7ju61i8dkKBoiQOHgAIFLcAwjvxeq1c05OkcOp1iXkYwFiswW5y7nSUqMJfH8v1ntOMVfJxeJQziXLUzscgIAsd7HesYsVknq47nzQFkR2aRdLSvQ4PBzhY5FK9Buas1qkB4/ieSJiLZx2dE0sPlp0sUzTdodm5xCo2EG6AOqnICFxxRZEorGXdxf4k30TYQjUvYMhsT4KLNTTgJ1+DE9LI9+OUfWivX90kYYr4QMYmOnN4nntB2A3XnOyUisug2xbViobIA9YED2wHigAhGKRxFR2d/fF+jZrmNPNADn73QApH6RfvH+7q+h2eRLiu7t5NRJprhaXXEfb/otdoo1WA8ReBhCBCcttmcSNuyCoUd8S04N0KZGwKXhMTaXBR8cYLUBiMEf7VwqTNwO7h6qut4cNXr3UqWexrO65RMjWa42VO4vlekdSuACBxEDvLgz3RtCW9BxQR96oL9UV7o+mgkfwGT4pY8vTbZPwoe7Ql12fTQLzTZM0ZAvDQGOMJnj9yEYxEqMxSG9nJQKEflEiQ79q+zVA9ACWcooWpHRFVaLVQ6njbHhvrIKG/G6ANFgaYLrt4hvnQSSTkZ+cDUMiwVOysQBEKXsBIIqH5+ar9OhfupNVdo2fO4zzNBvAfTaLfNyrf6DJZAvDLpe9eu143FnhgnDtqvPaYweK6yA8u0fWpoLXQQRQfcYAueGG9/VvFGa158bagSqyL8byjy9+nA1+GeKven5sBsEpINLMuq94J3YgJQFEYijGc5yB2D58XbtAormlgmexBCQrsh2GYICUHL/FrIppgBCRpioSvjalVrktSPdIuqu3UsV+F0CMgtUxmIjxtyxI4UShf9Rtyh4MDKQZCJ3w59nLLAgjas0F9zbv3dLmyKCMKY6Zp9R83kpidh2avGnRwJ5DY5E4jUhc/HO3De63D1M0+DH7CgD5DB+22LC1LaBiV9Lp4o04D82XxmEg0FS/stl98GrtZHa3J/WSJjBPIbkgFnoH8Px65banaRjoTHW/CNUpPilpO+g5b7nuvbqdalNiLj8eBm8g8bZ5ZX2s+9//Ph5nQZ4lhUTLOKuetcQAiXPEHG83jMYXo6Y3b0Hu1ZWMEUC2IWkWizV57BVX+DsBsuLuHTylGsuoDCC3QyOtra0jrbshi1nSA5AwWA2tk/vsBYAc+iljhjZE6gWSVs6wjt2ryoLu9sZn7jwmGwWVZMZmIDFi0ibeNIl5/+ttNXvsek2idC/WtLtU+BKyUgFCK+RjfdS/fZqv7vhws3Syk9mIDGcaLn6UKrUqv6kKgeEZ+A/rMju3fAfvYsNwRO87Say75rljfGLnowAG675ucMKLuok3T+Be5cdYEIGTpqpgPGW5KDiA1MvPiqyxYO+YxWFtQfyRAj0bzu+F0usgtFY2tbHcKH8nQF7pS3x6zgN5sRLiW9f+WO6tJs4H11d266z73JFn95Vsd7djH7JH2122K6ARSnSII2a0Z+rLeC+FNbzyPGRAJijBR7AyKWmsA+yoRYo0V2N6eAvZvd28H628QapQgFA3o+8ebDIjo3aqPK9sv5WWcv8v51Hy09jQ+zgLMpozbb2D3WO5+7x7HDfqNU3Tky4ARMiaseY8jdmUaieY4SfL1XbHtIPP8LvGIAxD5vGktMimkYcAUiR9L1Yzjf54aM1NtnWbYt6rEoCkTbULP0fdKmzVzeZcryx3d+foDH3hgq9W99+ZLUzKcX7YBdC+GSv0m5DDo/4SgBS2tPQblTpIp46OxDsgIGXhCgoapDPhNiNLNhjpfHpCP4s5ee7iA6jg3byCBsuKWKloOy3P2ORPRVGObRUB0mWbBSJHw6pyD5j7qvSpD3LEfx9AJFZtqkVVXRA5B/kNgGjFNzshuZWLetVSM3tzSyUAsTzpdNrjNsrqZB32RzWDSqdn2j1qqP6xNWLpzxlKny2NFz3jufK62EavhzhXYNy/tOH5GEeOICsVIBAwDPyGlfCVDRC/sZ+3rEyFnwehpZ/CBbi2vQZ3sHuY8+bTnKrZWjqB69xCGDEVSpccWk2v6snV3ZzJSWkvWZBZWxUrOXI7RtrCDWx3CyVYY4+cwvIbSX3gRGGhacUqmwq3iMzU3zv/m3YWGSBcrO3GtPIsuWEXB5iM5szSa37rePGbmGatMRJi6utSpmPeNMXtTr3h6E5lF5ti3h1LEtfMR2v1mfRuutvYG5tEhR651Vr8tE88/SsWZPS1Zdm2bTlWVWfhHp8jj+PQzQxmfCWAvdeWY//8FlL0O7ZDGbZNmd4Mr40xw2yXpXJyzuv0NF3aoEJ3+UsbnJz1w7v8qjyvCr7uZCBiI+xV0ohUGcvsHSpzsVaVnFJyrLGbdsi8e7uwTZUyv8qyve9I10/5ooUPWKu23S549iA0Q3KzyrQcV5JZe2QUbvsasGj10/q5Ry/9ZKhi5y49TfkSl6q/xW5bbXsGSWw37xzF895tkBF6TbEGINnEoe0KBMhvoICS/wP4eKQF6dv/VFcfCoU/7CYLh10kBjYXM5mdnlODpPbQfxTzChLJkdvu8YbR6vpQXebiaEiWXO4SuRxfXLy5Oh5PAonrm6uri6888d2zc6Pv/eEGXlwpOn6uLbccmtoazWRGMxNn2Z+GAuXXLjaSnAJdbPW8KC4nMn/g/fBShgRcDL857TB4jnFT0WA7hJEYbqjOLB0qRBVb6V/Nbl2oS3mGZ1t9JR6AsX3M7VII5ZKfT1TFN9fdOiraEyvDx5lMvL56dHH7c8DlbPl0oQrRHUH8Z54be9wO/zslrMKu/fl/0CMAot8PPp/P9TVKr3TToQfu15M+ozhX8aj/0/eRTALM8m1+zipcU4ZST/hhbvGrq50KOfeFGj4lUHP+13wQUbx29ZGceMIX/jzegujrOPOPUgVT/wpZpSH9XVAA4p6Y4lnkAgeKQZZbFiUuIi23XCNlOZUW4Yru8et2FBohHmhlgSi5vCJOK4/fu2iVgnk7+yBPpf4nnr+wdyV+ieRY+KtNuVzFDQIChSAgBYIoiCje94n3gSfetoptH///b5NUCTTdvb3T273jzJKZtqqSl5eDfPXeSyUvrz3E6v0zWbQXB4Q33PCfAEjrq+PHfmA0cvDEX/ASVUv5iZwtG6B/rysbraC/vqD4d8K5J5vNaurjq0SAdtWgoMWrBE29PDnYI3INNjsYfcNd9EYO8WyHv2IQMJ5Mm82WuWzDpy6Xly2eebVLk+TEQqfFmXYWQNYjLk/6SnyzxlcbIO3w3xyZ2hsmprC7mKkLkWb/JNqlVY6yL7b6/CQZX4viorhiINOWuzc749UGSDv8VwChQkCAbQ6E7Pf3HxHM3mfWT1IdWN6iyXgegjBl7+wzIHrjGLvLvkqQ9JVqhQxKCzQnAvqFP31dexsg7fCbACLiXXEce+YPp7oDXBbdA6suN1Z040CP7hx9kcd3vVfoMY9ubse0lakzuozqSelTgutk6NprA6Qd/naBA0R1PFOYTXcASwn06O+BQjEAzyKQ6oLJMsjdNziKG692BsFpkBsdBC9dKkDm3W2AtMPfLtQBUtCX/NLT7ecJpTvADrmdjcxgvR9wjmFGf/JQnq8OGr2HEAVNgux4iQqQsq0NkHb424a6inWaxE3v2NHR2JJQMIugABlCT6g0FBrHQvDT0dHRqbHDMv5qvBOs6cZVFavPAsJVrKc2QNrhbxc0gEBwjWLBYgQ3u1WAhIGJsb5RIJso8fhxBpDX1QcmXZ8KjGllmRvp0p+/+bwNkHb4HQAZMnTMdHlLgGdURCyMQwsDiDcMLHW5PoDA3e/A+DQHCMHjIgTVJf6OCEdWxFNwSBAKltH2d5B2+PsFKheKCbMlfT0JgkxXwhoZwWVdghjTLr5s1ea1JjYxyQHifNA2R+x409b0hAiS9zo9kbKx/R2kHf5+QQAp9WR6jNoRs+GFEoE4LgBknEPDpH47PPT3iDSKCOiOTNfPRh1aKTjYjWl52tReatIO316r9RddoPi9lYetC9G+jCc4n4MW3Th7nkW84U746cWKzStchV8xDDSef5asbV23S59+ctD/Zdfl/jfL3fk9+fLkG/7UiGdAIE0LF9n9Wz7f9rsA+eucH/fbgtbCn1nrq6b/iEqjjE2HmX7xg6r8bQ7L/CuOm58BCB8n4dSDr/w5PxXv+YEEIbi3++zvQH7I1ZRazx9B+PMkyNT1S7lc/lze69uirfqZHU6UIHz78nKb+k8AQvBS0bNtyX+7UQX8bXbh/hRABDhupZzMQ20C+AFA1ivSxxGIP6xJQJ+rJP5MFWuuImutyiUHxG9JkMnLw1kI/3bQj3xU5JwU+CHQOa0czC39CCC0Yw4PjX+5kfU3CT8nQbBZoe44uEcb2fZDgNATkWsb/wFAMiGd5PwzJcimop3eThtX22RysnVE30pSH8i/ndexMi8u8irIfwKQXLH6Q4DA4NLr3uxq1797+BmAEMyw82WT1s6urrRuGJqJxk3bJqNcuxCM6RL6A5CGaUavnIrfcSIVIL16xQVBjYLGT0CdecOoQ/3mCzYQWgr4FhvSyK8lNQAi6/S9Ea/Xq2c+dlXP25zs1eYkdiW3DlFAc4LwxZif5l6wZB+Lb+2K5nxCE0AE+h9Pg8bzy5oGghLzK/mXULQE4bcaKRrFDxwM/MkAEQhS1aQyHBNoECdLDZ8Er9emrTMNrfPbRI0WNgDCU7QBVaf/bofU50ta5w5b2GjMtLqBJzRoNYAk5TiMBuOlW0nKbj5MG1UAP3la7uNQpwlNbWnumpxknlf0ofGGV8HmCpCmPmiSIF/5s2h4YRExo9dJb1KCtMxGtO6Y+plD1zmDt2SC/RxARihAzkGa2yDGhuLhgJHdGgYPBw0gsbXjZRN77jgsHHbzviMdgcPBGCXiVJdZeim995MvJQhil5clwDh0ekMJVOY9M+9nArMGsHJKMVpJ9WaWkh1eZlje+3M2hE0xyrVbFS49l5fjQHT6+T7z6jOidP7hw0JAc1XUnfUvD06ypCaA5Pwg2mGb3GUijOPUAohp/n4GdTr5KpoZ54oPS+jREhrvz35FPluRdfKp6pnx8HBQVLtCLZXmm83QfLQP6hJEGA8P0qqyRLFweFgQaOg+jMcHY1GWhfmYl5ZMGdNfQYL8t+Ljx0T+lfqrp/uUvEUJAoJULakMQTtCgI+WlCfIXIuaD0QBYUmqnU6OFhVZScQhoq+ir/CDVh5tEZ0i9ToHTCCUSpEOsVHMFcdbALJZy3kMq/RlLUvXDBPCmCepUOYW5wbNpvPqzhhIh3pDOh/gV+RijHzWVSNibMRu6ZUUfWKYu3+fqFZt4qc0ZaPf450/5A4qlE/SkgLB9FyaGVGhiTCEFoBQuYgzKkzeAaejnkhSUYLOPqOABXeEuRoNJbuArXk1wZV3NOGDQ6h6JAb18jUIV7ik6mNpLinLStrP0t+fWRNFSSmaN7rrEgQ7FX1tjtOHZalqJSiMRiSFVs5ln8FYZ5CWGvRKI29NiDBER0mTjwaCyf4ADKxHxGjdgwwnpJe6A5n6XzWBXjRVdXJA2FiHllTPTqJqEZzQgLt5EE2xvvSKgviVVvHnA4QO+VpR3mlWDU4qil6uynqpcgWEkzrJ680xF6FyMQCk5KK8CBEDNVlifpylWlcUuExS3//lik4XmW0ByC01BVySwhx3UnYijmqKpDBPih9DBkzLupxPU/ZzNmBBn5QHzio6vRk3/6DjUOL+sBdAuANhs8I9afNzvLO9tErMy+M/7MC0LidJuRzlUcx+LUEItunQXQUsH2XupVupzAvIf1Q9ustmAS4tQar4Gj+QeiqCNINhWR8xcRQzz8NaVwR7IML2UZbVfHaD8AqQAu0wswP8lJRibgSzlhptMGvxP1bRVeGF6itvb0U4xUF5sq5W8cH00oPnMYhY45pos6v2VjcvjUSNgiDlwdgxjwPqFDjf1TRPlej2GkRFD1s5/LUK9gYAQrCYS0rBkZ3j462C6jU9R0fh3J6PDYduhHVskMoSG5zVPJDKJeUxYEbRJxW9JajQ2AHgklFJeuVrCXIt62i0JMnU3A3OwmiRdL0To3Oj874REUPUOlABQsecG1iQVDZVL/whF3WxQcso5ia046hkmbOREgZgvlrUS+6Xi72nKWA4V5QsL2WXVKxy36GtANnKFak5jrkEZemVJFqWHymlyM8AlTwC5iNaQjJXX6nNxZYsuYzYzyWV9yDcLXajK/ogouyl+SJ61gdbqBvpHkUnhRn9A+2qY3yiNfWM0jA/vIAJiTuYD8oXbw0gzGW5uSQYSwLg6GZDKQoDwV0eRow8wUBHRvzAz5ZgGcQFNlAYyfM+OzL+/NMzEzEm0bEyCJTiPRwmXVPooII1zERQYRyM+MMkUqMwQFBzTx2R8iYIYourJeDQbHx3ME3T3hhAmBLFfEJXq7Wc/sLAVYWknGKSRWYnWg4xR++21eW4kw7muTpANuiosQccpj46GixRfhybXgna3b6OrwEihTbupwckPWMXoO/9pfopbkPyK0D4UQMUIIxNr802bxSijmjU1L2vHrBMAUKv+Q/TFwqtzyA1K2j8lma99wT1UiIGzKYlhXJrAQgIPlSLuTIEI+UY7R7sVJK5FEyOY0UnbxhKlLmaULDTBM3jNOcQC7IT2Wj/JHMXrwDRu6eW11yU8IzpojxfZlhhBBpARFxQOK6CQLQq7HCsW1mh8oXXlI26Mm3IjbEUfWs2iICMR+/0LHgKwK3XBNJ1I7gmD6R0uu9UipgpRHzOk2AZKB+cmQ/4e/88ZPdNzGIzfWJ3ZYC929Hh0MBU50RwjP20iXE8jcAUYeatLYVp1/CJZee9LuSah0ADZry2TZ+ZMlzzztmCMzhMn/lOetfx5gAi4KJCX4n8KObKAwjssr6YgQPn/HgxqlcoVvAzAXVKp+EVIBP0d15jo8BJRcmhKmeux3nLWwGSVOdYh+WkssUBoprOAvkWQCibve4mNoJF0odigI9SsnykkyIyjjh9nIB6GhxWZDZAjVSjlZWubwMkKT/UUTlVK+YGIOJew0M94ZTi6KoOEIIdWsgzRKNLkVwG8EoqnSwhrugU+6s6QB9pl1w3ALJECz6h1wAVnVYjbnMqajWl4oqqbX/+ifrfHAdrkYwJnVMYt4fuUeiNGRIZ9OeJCXMPpBvbNiAWXMGJLq6pU64B1hnHiShQHgZue0u4VHwGHPc6gL0z4PMIur0MIPY+3J6B/VZPc6JJBYh1BChIezCa14CNTgSkRWAmmX1rKhYzrT5ZqATJ8UNlsuzFJ0XYeHhUksoKA4hsh0jQw4aHqAHE4aG4iIFw3UfxM4AoHqLJzq8AEoco4qXKANKT1EvWgVSqbyrwTQnCLgIPMIVXVvwrEUnyllSADDE28zkGkCO5WM2rXxMItuRibRsiiE1R7BC+VrFuctQYYOjqWV5ZmabCL0fz4h0HCOdBE+Ir0wM0x0aTBJmX9SHV+mYzs6JWSZHtmeMA4TNp8ZWZbVq32wZAMkXaFwaBA+UB7CjG4kkqldqOGyGozPxvccWrgJmECRg4w+ncwDyOrDBZMrAxXeKOKYSdG5nlQOSKn9PJ3wvh0DgfALsw4JDaZHdlGmk+BmLmHhgsK80ASeFd7xTvyzOWm58dMQgRnbdYCQ1NFxYVRyDEzDrXESVqhLcAEL7YZHrtQ3wqLSXlKUSZTDjb3Jz36hTaBWF2/iujaQYIJyp2Q+AAqL7HEKci35EgcdaRnylAlqgEoBaPzIxWaQzfAkjOB5FxMe4mJKVaocKtARDKRgPIPsWEZm6wN71Osl6fnfTrk5X8t2yQIzp0U5S7PankapWcTveFBBGwbEsqMk/QAKKqQ16KzauNqwFqONAMGkBougYQAeGJIstX1enqANGEnC4AXNGe2gEeWTIPnR1vW4KcU5MTcQs2+y7TGL1CNwMIs7XOXkDgStv77dYd+A74S0VEPMGPvOvap4mzVEeaZ6TmLaDkzODGSZM4QJZVFQvvPIkBB/bmgbDZ2tUR6J1k0NvElmTv7+/0GbPpKKNkHd0IbwAgTQcoP9LX8gCTIDrpIw21XPEePwTIEx0W9xpANPXx2wB54QDBeTDHDhKRklKyB9PfAgjHGR4qkpTsn9vs1f8bgADg9aYjm1a4ksv5HGid5qUEe7SOOxjS5/SSZWLTrqjjfUvWVKxBHU1IT2zapGQDIJytXp+jtVWYlikILQAhiIWqeinivpuQmgFCODKW1GODD2lNTvgpJTJFLyu1LL9NgIDgnPkwMbpWPDNwxp1rKkBSMOBsDyKsz+rbZo4CgpMvhEwQKUDWKUUmOIj5FAgHyCQFiI+2VZMgLC83WoYs17igEsS0thIXAr1UzGDuBO+cgrr/PTLJKFNvT4LUzzeeocJgl9uWyZPP5fLDdgbkOwAxMgM0wAcs/2Ad/g8BwucsLh4eyl10MK6yEuU5CGILQCAgS+3hRJjbIN8CyBGt6gbqwKYS5OKp/LR3L9KILwAiElEwOBWmIz3kisqGKNZtkFUVIBQ/1aAyYhC5DdIACKVnJ3nyQJEyhBaAiOij+a4d3AZpBggXTXuIBfV0DoxVcCX/9FA+o49OmvdOfrMqFteZsDnnFrE3QcWdyZxR3+gn1xAx0snVcYwesdpfzsBUPGWt7XOBIGWmLdtmcmYJmPRMmrxhFSCO0BaQVRYhMusvgathbWaFJI6A7uQFxoM3NInpraeUUjfz1gCiBW3evnYA2KiRHgCHtSh8ByAYluk4ZQ3zUKSE/wBARO1wqLS+uo0ZzdbGzJcAIVigKXegwP02QD6oGTm0GW3us4YW8pUEIRhjM2AmuKlEmIbxC4DkNTNKWqYJz3WAcLUzTdER5CFJpytSXwPkms7k3cPYDJBT0PaVgnqlE3EKk3nWFpELafTJ+ojIAaKsvE2AGNLDfZeY+kcK8H88A0zBLA6SA6s41e+OodtlTe3asrCnWBu7ksBqcGP9riTY+7evvQvABDPsendAJWs0ZQVTsa6Ajd7U1VxvCovu1FXiE+L6kX0DP0z6priXH00/AYu6l+3RDYTTEyPr3vKbm8WiYzG/dfP44cPSRpCqClvg07wDaj2/K0EwkGMLuIyGA4kNvj8AEC05auYAYZO2W47AaafUCpAcly0g3wZIT5C+1v3ayyjG1LBCvfQGQJTdramp0wGdPkltdAoQ1dZeraoAeaYs7fTHwjBluUIjjusA0aaqZJ/YbTJ1k3sGiG8AhLdIxBoHCNes7rh6aKcS6x1d9iyr2ojK75MKkAeZKXjk7fn9YCsHBnZjmOzLAIbUDP2zaIK487IEYetiB4gezO9NGfE4zUjvtyBg4XbzyABxqpzqAcG7cxq1Ogg4pgyPyxBEvLA5wa2ngcxMGKXUxq4fNOPemDb/tzCye1k4Z6rdw2Z+Bh0zs/nyvSC8vS/p+Y+SQoNc1Sel3nHALyd1UtfFyN7IxQG+B5BpKjikpCtCTZHaE3D5nwLEsE0Z7+2N2KRidQqBIuUiFXWK3CpBpiU6rPset+36upGu1AGyAtxVi5Jubm9k5KKPYCJXlIJntMJX5TCEptW8Ct8Ook8qoRgwSlnYlnY+eyVupKurmC1dGzijCfat45cITWgAZIPCZRGEozkh6ZODXwHkgr4krKfPI2lug1B80Rk684VBwDb9Nkjrrx5Kev55ZIRW7SFENS6BpuUolbVr6c2ZIV+4cm9aFt2c0Er+vUSo2tjDCMTm1MZt07kjQmPZ6Zv8ki5ivaIe95yUcvIziIAzNnWUy7HVIHypiTp3GtMxgNSXmvRVZb1eooRVcwy4pFRfAURy8qUmRQ4Q9v2MAiQa+phjrBV9NT0LzFWSOjaOg7qk7FaXmsxxG8RolpM0/qMc0us5QJRXgMhJBpACW/IhszrqRZxT81vPj+H8xxRIQ4LQNqnt0n9gkqOm00lK9WOQgjnPCumvUOOiZsdxU8IrQEA8FD+DIPyXPqGNHsOM7hUgem6kv6fQk5Tcx2KSA8RkqdHqJxyAw1OjnPkXThEH/6jmWNBLtU/864hMS6usvz2AvB4yJgpgyiu0A0HoHf/zeuo5i1R1WRrRvBZL+8MIOaPBld4jEJ6qUWn8NCCwZ6GZDb15g2uxCO49rl6JLUby+hY4nh0bCYU+KkVLGRiSlFoXlyCKUrUaKJwkvlgRx50RKnl05otZdbFizfoFQAI6pWqh1zu6uHGN9edTha56hOEupOfMk3NZEMza2NmxiY2Ap1rpZ8JLqkyo636mIzlZ0bmnT2tyMQa4a1JtmhsMFYkCTkRhQicrrPwnCPDb6IOkSAnXch0goxVJYYHGnl3yn3+PTS6n18etudoua0FhWCdLVRuEK5lVIj/eWa2NvM4dL8sSbzeXJku0dBtmFKnWzwHC0mhSn0LzeUfGh6u1TRBcunVKzuJgBqcvKFE0+UAojBJBRWLVsHA/a7S7Jcqn780B5D88C6x+3/K3NRDsm3cN/3ZVr5bQIBHe4mpeVr9orLDsP7ycrW8BMJ3fv7+nS8npreEyHM6yODFMbwSMD10OdXA6Mj4YDnN3SA2qBlPxkCaC4orSR7kEGroMmwBx8jC+9Px+pUcV0Ia1o7E1Gl24oSosHOHLoQw0M/50/zlLIF6GD0UgQ3MbKRt+w8skgaXnY38hyolJYO3+/kN4Umz8Zj2UkIfL7tcF8jNHR34TUBoKT6pCPhO+DAfozfTY0QpNmBwKl1QGArppvXu0B968QcEYDg8FXrsiwBiEx47WOoDZoTAnJQHaZsIYi6Z1qlqm+FvVlFm+P755P8RqzZkN0laOvzkj/f8h/PSHQk7GhF7zXqV/g/7WDVN/TM/9WuMl395Zo3H/N4w0Pba5wsK3T8b9gmMzcUvCNyvbyrW1ihBa2iayqQ7FjwZPTvjG3Ub9Ynnz9o7z/Em/WM2nxDb7lBIay/i1uNdL877cRmJTafWYlvxQc2mseLIWzf822LSU18pG+GrLbZ3p186+6kB4ffiyBWhN0LK3PrR2RStDlR+/CHz621tq7AbWsnJm/xeutoS36L+l7VnxjQQBhaRetr9ZJ87/r6ENkLcRmFkvB+UpkHb/v6nQBsjbCBQg15WaxdiWIG8stAHyNoIAjI3srbXx8dZCGyBvJ7xJI/X/PbQB8kaCgP+Hiaq/XmgDpB3aoQ2QdmiHNkDaoR3aAPnDdu/PGL5/JA8v4TcHQfhe69qzXl+FtwCQxslZv2XmRhvWv6R5+MOMGsu5foy8BnWr/+b/vnsEdaX39+ujLhtWl5H/sQa+vSVPbzb8pAT5ZVtVvnvU2S9797ZsvfkZzGoxrVGNXmgdeo3UX/Du+G69/wgKG1Uj7W8t/xMJYhqfNPEO/2/LNzLvrl+xj5FfJEEGT0QIfwQflMawG4Dwb/HBYkoGNWX2qqMBQQJiVLFhjDZW/P4kPjC+uLvEbnb3vzWqadTqHoHf/58M+eaDNTF++nd3Ff+nAoRvnfAmLF7rNNgOr9etY2j48Ba+3PFFQ2N/WHMSjffNQ2hEqhc8hxzQMjdvS0MzUWsRX7AH+L2IlLXOAJeTWlEty4Jbl+hOJ2c1MfAa0zHEIzgR/yNiRpeFcYa5EggZXlFAKZetPn5+wqZeGm10Ji8MGlwahWktUGNb60UQLuqKV/Qaq11Ao26io1eEPJisTEBstIAHjobGb8JS6b93kyAIrLFVLR+zEOtZ/n+O5f2fSRCCY1f3bKHLVX8vNZ/624hsvjZUD82CUa+4zIB85QV8crrOpJGxVbFrLopfG+wb/7vX605HDL5ZfLWfTWjURXsmSNnrtdEU/b4xkOY9KXyHGMHSCER8PgN5pTXu6Wq39LEjkr7Z/UiLhuHQAOFbaplW00Zs6z5vAl9vFCK9vqvGIb42r6mBKMgHMCyUtGo2dU1zh2tIx2OQ1aSTVTk785rQtvJ/iwQhuH6AiKkEwoM9u/vsZAfbsB+lJRECFlaAoQf7bhRkpXR/sR5Qf4bwiM23AwL/pj1lgCE+efqSKgGmD0TA7LptIk7vVxw7e3x7YLyE7pXJxfKiCTCuztk+9+AoC4JTPxxxx9bLIcJXw+5H1KkIhp7s81lgYdPep51q071uOwub4zA8n9geYpgdMd/7kd312Y610XFza7srAIdDhfzFGhvzn87sA0ZgYp3szYLgQwrvNm13M3jvTcVZz7yn1B3H4zTLDRYKmHaV4xl0jq2MpHrURs65ppRjiLjVTcKQcMOIraKJFxa9WAVBfHOQtuduhOF/emBzzw+IB4HMyz4ON84GVqCSLm6WF0A7JRmZ5z7i9yRa+PuT8j2D4LuXTdqlBIHd+fvjmh9r+w5MLRT2bk9ZCw7cc6ndI47g8dTwyTPEgTEISKWEnVDwLJ+5le3zy8bUOQb3TYsneVptrGzar1IjgbYE+YUAAZxLEDHxBJ9t82UHy+aL+w19z6E0C3R4b3CUPtoqjmAyZLv4ZLUwOY8V1/79xj4wYJ6akj4hnBweOUj3A6degmnz5/sB3TRu0tfXeTYyu5N+3Ojmd1PJB5C5s5up68mOJNslnniGP3F9MpBBai8+kpzEO051C3xKpI7zMeTNUzt61ZP4uHN0LWWxmNBzchSPPGBKZx0ewFj5w7oUUGXAw/aKZxg4idymXuQ1YHnzeUuagiPiN+qXIRgjN9v9p0vXM+PW4KiPAde8D4x8jANdeXh3MKzzuadNve69T06nJg6RygWAmDIAEu2dg4iXOXXUO5IewBhyIpNODuukAu0nly+pXFIp4EvojuOK1ad/4jzCkdCot/oOfqfSOcF3GDo7YRxWJhKVLeBestmqXSL8ktfn7Q2Z0K8zkFDCYw9VnmH0WJ7LlYkFVqQ/6R2NjCBQ2QVMyq2xU+50H2zpiz5bdoEeO9KX67R2VToFjCkDU0HdUbcgttWsX+fdPeDNksBnl4kk5kXAkJgCgXXb2DsEbG5i2hUDDpxYkZYBf3CWAcS2B0Iv7z0O4MKNHV0WOI4Y8HALg4UpMP0bGEiGVd0ibhGxkTZxF97+pInvlnByX5MlHOkXNMUqFgpgI6FSLRSzjGrNEwVG3JzAtwlCAQyuzl/NAdY1VZmLeocogVrSficEc5lGuvYhQuBOk8+9JrimgM+jYnKZ13p7FNxe6hrDcn/XKUWyEPD2YM3KxIw0Daz1mjQtx2ahZSzWhoBMrm/6YCo9sbMYZQl2iwG7chZOj5GCYhGikWCssobjqm1QhCdNEOWSzxFxOZDRzwGruUsQMN8Xu7jVByB6aYsMBsAdNJqClGo6N4zu4iaGpK5Z+CvrOKD8Y8oYa+a4ziZCFLFTOwf8tSVs1Whb0NUFgl2pB3O5LaAzKER1e8B15K93gPl3wlsACOhwlcwu58MkpnupKoExD4iI/nVEHrES6cC1NzWSj3ThaoImnjrVo5ekzxkQuF00KTmP0TJNStkA5yqmXCy77QrWFEQ+nHeHAesRpTgpY9LiuqHJL5sQsdoFuEcYkbC8nx/tEjSqJ0xc0Vgq08yUfXGee7oMxSBiOA+he6svnz5CODIOKq2O8icuA/hL/aYv7xzAYC+tmNGyAmSm8huhZaT6gYkBLFMGw8ExIyhqqKrP/e+PwX48OgbPPqacAsonMOLCBwOmrBrkuqk0EzEacgCPFf9T0Ks3ezs5wk+ShmwuT2N9B/m92g6i8fW8W1fCtdTDj50bnlEhu1pZAXH0TgATIYdAmAlS8XcozoOBdeUBQmlrN++1UWjFgYzUR3ExhUWaBTe1NbgjBuznLrnVVL2EyIvtBtaVAOaTUYKAvAsDqO1oLA5TqrQby5UljNNKf8j37YttlPwaCUJwe1bqEUGwbQchGN6ACId3DdZFeKZgND/05fPry+g6ovEP1+rbN27Xr6LkHenLr/ddwnLPVLQ8AqEs5i6YMRv5YAgdauZ2/yf0MMeHcLEjLneL9m7GV8T8BaKJBUo9O+weOEg8IKZSPcJLYwnGI3uMfRivlrYhvYJTz21qRDeERSsQnbftfnLNgVfIs9k3oF+j8Qw33m6sW/e25yNRBg6Uz+D5RHFzlEiH1SNduHg49nswsRo3i9h8AqyrTHDSijEgq9Nvy7VTSmi207i7YFTAY4SCUTv+tmMubaSiYNhuc8+Vpr2usxFdP0SLm/VPtC9ZXVcFX9BIEKYPpt45lsJMEPFYcdtsNnccKZ399rqWwkTQwQ4x8VNV6RCjvaKAJ2kcU7W5eZ06Jdxl4dNcYtoOgk4zCEWViJvKB2Cc6nIL1WPgMpdCdyJ0keicxahe526LkV/m1cS5pLqQ9e2yq4XZpccWEXOrqzaoY5u9TZkqA88xVC8F2A6ycciTCqEYYEzHceoS4FqEiEcv4mkRHB8m7zluKDtkqR7DnnXHxkgBiHpvuMN9wueGYd3BO04Vmh3sjdFSMOTtgDZvq7pPft8rBop+IG424OwKeLDRdNsBo50NbQHhxCTuypTwoB9boUmgjwo9Wi3sj55a1cp03WHFbNS8MB+47zGfH94BXM/oSWSBce8lg+iWdgJGnxwAjN4JICsPgOKIFqi2/kbJSytAv4tDzdjrBmL6DRQ0Tz8gVq/IUlxO+mckV8BQbQyc1tmFXSXDSLBQGQNOq8tIu2jCfNIEW4SQEEU8zJ3Ap+H9KXVOSyzaecEZuQ+Yrr7gUt5nFpGuG4hTWyYlF0DVrwUEbPlPy4LQ3onySwESCGXUU44TKyAE7lEI/tA9qE7VfwgYg30QShm8p+o4RQv3al0wAuU7xKRnkJ4ejFlBMBMx4fYa8E0Ay94t7I1qo2wtbWCTpyJ2PBjPsGEcC0sFdN/pJ9FnY+KmdwuzZSmAl3kGTSdK+lMYShjX71D2MfWIZQq9Q68NqyFBmOmlgLKsQkzvo3tADoPQQujoujT3g5hvwJF+4oZhSTnAciTKEOWaQTRLwel5pqIFosAFZ/ozsBuZYwjvwX3ISMe9GcwkizVMEAZBffw8YXbQu/y719dDOKk8QaQ2fl8gnCoN1kZjN57ae+xUzwHD+ofsir7MSTdrUz15KiOorhTmET3SBk4/bg4WxuLoqxzFtnUhKlDlpcxubRim5AmGckdAQNnFuNw3ns2oE8Jm5Tm7eo7ziq/n3lLbwtbHvmwPrMmZMAakHrgTlOiu2I2TUCaQZW+t9natX+hZcatf1ZdnQh3sZsjs6e96z4bqR+5Bcato7TcvYc9Ho55dYCTuhL3rzgQc6bo6nX74XmhSnx1w7QCHLmd/1w1g3Qf/5sgc3sPJxMrZLR6L/fauRxjtXvvcwyg/LoWW8FS0z+V9BJ4xpss8AKlkvzkPjDH2C9y0zSTM9vJwCgWvy74xvwhsJm2FdZ19uM9t5F+TzRb7xfU6DnuZMIvE8U7XZV93L6CPgoYieQN03Fvt1hSwpnMecNBtyj3AwUc/qAkCFHotFyiPMtvIAw4QdOtvQdi5MlXJHcMX3zYme2lnEUy6ZUnX321w5/S+I28JZ7ooMJugXo4fHIwQ2U5Z4pMetqJBPaqhEofhRZJ16XPMeOXkwIMbWCvmIn2edaxUnrFfCQOn/4xjKFmtVarbfF7Bn6gqiQAcwznJthHJYjAiF5exLstz8DgR1Z9AEHttwF2tWql4uttfRH6pBImyDqVXU0a7LoTVGZgCV5LQ87gQI4jN0qTZGNTD0aYDAg3ILp2XBPBT8UuTIAEDY7fAXSAGjJqlSzMS9oBMN72ZZm4WYTyfNok0V4A+MCeM0ybB1KASMPg4bQRjv0zZC2CVmrkkRgPQMT0o0CvzdUiEwkwHtCUypulLYjDCEWD8siIQm8kgKrJqiVhysQbFhqbHwdpDc7HKlzIMBFkGLzb8J2di6Ol4bSRA+QyaVN7ZkvDFV02CePUUhJH0DMZorCEbIOI4rTzvQmOg0MFpGUEmy5Gx9U6N6RhknTo+GBBZ4YMlmEysSJqhwwjToBGTBQLMHuKDdyqQvUx0avPK2awRjHNWpOVQNoUSZZopOJCNwTDYDVrZDtE2eliI5WvLf0G3pt8JbwAg+EIa1w99hza8+bVO0ZKpkdSavZW+mYDUWbZ+kf7y63ODPY9q/GskvZK2VrLBAqAQTcdBVDaktRwWtIdv90wz71dSHOrmG3pMU0UbtKygRm80+LcsSQBp3DfdMVvFxySUngrxevNaWtwSSXAqF0BQTpO2cvXrXY/ya92ZqBrZ4i5QI60Pq28lNbKrXJsTmjMS7fetxzZTQeA86uzRyNG4NgKaOL6mQdAiCI5PzFMgWg4tRSNBE8jV6Ga8aUSty2wpR510JmoMmmvTyNdofb3BBNqNSq4V2XJDE7VWwiefvdiCe81wUC8aQT3yNYuINdm5d2ZxhdsrfP9PN0z93Pr7pfwgfuU7VcDl/vnvtoEFmMb2LlKHf6AcSunfuNi4MaBtnv8EQH7vrr2f5/1jAhbzM+U0WPG7Vopm3e0/59ksdX973zTrVm1vQ28EIH8CcH6wlennAAKgfk4Lu/y60cT1JVqrP7p17Aee3QWhpZBWZ9zNq+p5dBMzTTtrL3X/H0gQASY2q/Xr30ycwayDXv7d7qZZ8Zfs/O2IQtDa8e3NSeI4LYg3llL/Z5XvNjWOMviDkvCHuXidSXNqwwo3BZplicbmW1Mr7dnd3wSQZnOP7X64AmnMFDVM+BbDsMU65XR18tZ0jfey/hGkkbuFH/8+3wPCs2sBMfspzdJipNbvWyugPWWSRzBayhC+UVPwmux61clt6zzqbdUIWtsOte6l0DqIFvc1xRc98GVnNXoZM4XmqQo0z1pgwWpoPDauBHsnvM9mwsDgwXbqaFpLXA408TasRduS47ftKNRmddmVwF/Zqh+92JjuJRi8NvIZII1SI9CeNGpBI29NVxUCglSt8AUhja1f+Wi2p+scAF7Miv4ehF61fM37YesFNKqlDf/nih8zlUWQ5rIaTOhfl5WXl831QST10f1aHe2+abKW4MPHe9Yv6sPaCIQG56ZStOky8TbciKvjIyvtgXwR1VS3XTcIz6FF16vqWeUAcW4Dm70n8zbJ52D0YTkPSq9103lxtg2Q3/gdxOgQaKDXKPJspZAx0C06jK8JYP+GPaKJXgxRVTMWo0YWLwpwGAFBXd1NeCTQnE5ZcBgyEpuFJ2uEEEQtI41wOPg6rTI6OA47HEYTDQaIDsqrvincEOig9YIAtSasAM6YMhRZHAwmEQTXxQ7s5w6byhIYDgwqE9GEHmmAw+6Uf1WjdQVjRWA0AR0BoyEqCmrVIGj9gxFpkt4ZWTkwWO5AKbUnjakIrSf5cueAkSY5HA0jgqbNd55xfrEsJVLrNpl1qEXw88chBib5Y0ehW9UAB8VYKMuiYqFDiK4P/DzIdVZ3X+etBhC+bKx9GMnv+w6CzHww6IsBHbfB5Ea/WcC22RLp6npG5i4YHOZLDAtWqSg9oWOvt9g5BESvE0XvroBY//FoMXK0bC2ad4AbT7LXXuJ680miGBkQ0NN5Oh8MDdCYQ3fSmwryxcAQ99LF0JMRO8NbnqL5nokWc7B3bhL+2o2YOIGIq8SNVxe06OIYvsNs/851sHdPBPZ5vY4pE0xe9xYji5jp37IXLUvvzEFPHFjuDBWd7yFabIAvQvBaVtmAqH21HOx9MgDPFl3/ejXOAXKbjKLjjNZ1Hch2LV9Jn8R5c8LS6c4i3pUM7RLV3cJmsDhgtYLGhVg58bQUVD5hy9MbpJ0hsFK208nQA0HmjHZYiZxJOp1TWO4vBj3h+vl2+ORbc9GbS1+nOeIHYx1wd7oSlAPUxaCI26y9e0D0rsvay5TRPrpuZ9dKKQnepQ0Y9MZARJx4ICJ/92iFUJcg7oH25/PftmHqUOeMpyojMHYpq++c1TJWa0vCeuUdCknz2kHlM4hAESEfxTNRc3BpR7EBMd+iv782jfe1SN9xKOc6WFUsWK5+Xs7v8WHZQ9M7q0N4V0nnlzyVMAK6yP1ib26HAyQ6v73g+/gedxX76pFsphnKAwsvHz8hL2eQcBIM1fLizcKW1ElKuTJWapGNx86PfhzXnoVU5VFVxoIftub92K+49sf0StfqdmUY2Jr/cKx4EMil4AjeQeBlHdCyPmA6Fxq5sVE1abFytlBWQhzHQtoNBHxTKx55EM9Vs3sjNtcbMFlDMUzVTvxnFQYjGJ3SzqO5ugFMncWncnbE7LqteAzb1/79yhm47VQdW3napz3pWtuu7OFIfvAP9Ui+5YNrU12fyoQKgdAsDM4dEl2Oqqt44t2wjmjLraL44F1BXDpEx4cSTmzAhoviVCmDgOBlFFjsYnIOt2bgMDQ5FHHUedN9k+3Ten4bQDrTBsA5gW2KCZzSAZj2AVNyBvaIA7C6+RAo66JAWcoAZxaRx6zTQbVbuwd80iCI2Yp85T2EhvWSV7K4qq0BA3KW0gSAFzlQT52qncOSMNGMnapav1DbAZVefJ9Qp8UAGOydUdzUbrBeWQK2KdzMbuA5xzWOkuLmSJxXwhCdkQ50JE9AY0As/RRICzivroLUy1qgSJoCRf6MQ6JMHN5+1QSRUxAZxYjUg8/VU+Awdwy4neiRykBWGgMhtF1xmrWyxvkbvD6g3wltaZXuiUO+X5fhalLCCHjcbFcU8PzxCEKTgnV3gPFEGIPSCouud4QtBaJuKzOY3wHjQdXm2jtDOBgAxAQTmHwzGc4ueNLwPOBbRSDCelMzQbzdbRPkd6lYYSnoSpure3CZiYgjJYBem3CYHMWhVGQJT9zAjtggdIT0zrRZsYE8+5yeopOgy0XoaBsGStIGDs2V/mVwm/uYpXsEeJxsCCRo8jUMmE9zexjvRj3OUMgQqKaAHmWDOWewutL6gKgvAxeS+FihY8hg9ZqAPWkS9rRIMBo0INJPCkEfBBZ2q7pUFMZeH5CRroCZ2hRKA3azR87zjXf71cFGWZSTL+gQcKsXj+lAF2aTV3UTxDA17PIkKUopUkUsVI6wWj3GQS1ttiSqTOcXLVaa0Ech1LPB+B/QOu/BgMBFp9kp8zk23Ohym1mE1Q4rY1M/DmHcXjHfv87SEWzVyiMv+jVgXbIva1bU2KjdkxwCUU2Qe6XL02UuBnB6ZuvSH+NpHiJKEdYOlEKXEF3vKClMwRuM1S5GyvplbRahbYL81uXui8rY0vPWUmlWKcMAt1lAvmpJlE1UiOwvHW898mn4wVwKWJAHbo5Pl8IoS+v+af0tYvoR4LK6D9xTUSGYxnr1Bb6AXd+3MCOV+e4HmHR3eF85BjFqJsi6shE/DNnoQJwBbqgM2lFu77NdCSpEtoCxXDiyCUHsDI2DwOlBt+6JwiXkA/povR6impSa8VFdZia3SMumkgsHuYAp4do53K8sIM1NEBH1stwUSfP00dJJx+6kgHhthQPkOmnCpi61vKyMIKusQ4TYJZktU8Bw4vH5eeneAbaz9QoG9HuQ8VqPB/tqM1RA3APhpG0reyFn1LGe2ZBdtMOOaIctZWDp56rZljkXB1EJOsx7VxcbwU8Q0fMkfWDpBvvcyuxpwsCTvTO48HUEAplZnHS+75kJZmEdgwFbLnATxCJikO07FrFrQcxyNXJxVZzizFl290Bbw/oXe2f7lUQQhfHfnFmP8qKAvCkiSYhmiKiohVGWSaQS5rtbJqioZZpF/f8nmT3uLlSePmT1wYVzdmbuzL0Pc/YuM7vz3LkxB/l6XlFXy4z+GfpiZSYDfQ6JRlHv42rJ33p1EZb0p6rmTnUKitV1SucXjcQ8rLifIyVFfRqN+Pko5KufLt1mCBbPn7Je/wRb58b02l2Do2yKk34n5NzPxd0QPHPvMhobg6EO7505HMHwIJKEO6eCFBCvbjEeGHJIwz3U07GHs7zJ7jRUPILeHl6dH6AFH3YnYym6h/cMW8eGrenqMkRjU/g65tC8940pSKeXir4Na9UjVs9foFEMPXciJL4e59W7mWl9BUrZHPuxKM5Mj4tcRxIK7W20dfqlgUZe5snrRliIsUtfk5cHS/pLXEoRhTJSUjhFCkF4tJHJdyLY7aVhpC/dzeuCkexvg7UAMv0WSWbXGHGdwLL6m3jqrhDcQEpF3Xco5c70i1sHubEh1oy742zFU6StJ3u6H9bf8VHfK9e2u4m2u09XPG+QQpKqPzgc09LZk4lMjsVqemW2MztJOZaEYLsTuvwcBy6HEHuIxnSi61IeG+c0NgcT+g6V7MPD2t2s+jOKuocP9zx6hftBBPf8DPa4N3cz+jrhtBDM9F96llio11K5LVbrXzg8j8JavcKFXijX1roRDdb5yUSkfRpfvwOR9sOge5bNeu/mE3eI5XofL+pFpGDcPbyyF9ZfkNLj8LQ+xEY9MtEbi6hLcVJ/RUkPrCykRxLsuQfQKIx8Pj770KjaeVgOHygyVv9I+Ztff09Nn91/MvIETuonE84FffdbsKoetWoR70Yh9pWZjkZP5pnXA98qX+/tH/ZHRNv9hrPwLu0UmoOcLzlRmZ4Kt6lxUf90aWVky3CAILx0v508+krJPbQ4ev8YFgLxpXLV4P92LsNsZOko77tTIh+QDWW1IKGXqvXScPftFOTmJumLBX9o4zEsPglPxc+Sg6/9nsAdvQiVPX/ocA6BYG43fOJi8iwcOZtBbkdCLytljfJrkLMb4PJtse4Le/PG65BUJPRx8ZvktIbgcEGDT5nI+tKmsbxjORQp7tScjyPvoC2zBR+8nleJ4zEZTKEx1x6EOa835OncJJ8ZIFeQgldBh+s40MClaI6J1+HI6SRa7wQM+PIw7jlibDe8MLNdZM3r4sgTtWwdu5h6oMG2b4DuFc+D+e1l414dnkYbjWTe9+0LXpcRzIc8/oC7I4r21uv3FiUCQV/QMzp99ojxvXAhOvoJDnr9OeIL4Vpi44tykKmIp/cCoTpsZQ7tlScz2ecN+0YHmAnFkVC7QMU0ORv3hjL7CaX3ecHT+6IYVzhz60jyXf7MNtq+J/hhtQTJXs/s0Jp6JuGajSLKoVBodqsN7aQPtZB/YvWOU6VWN2+nIDfLB7HiWiI9BSSJ2BZS2FlT9i9YYUSt1lylm+RWsU2ISd6wGqoSycTIDK0B2dU3pChEI2tIO3A7AEuNYcysZyFpgamyVqODjk9oFGPj5uDeqmvXjwBbDpq7yG4ae7PmYoCWvtcQ2FTbo6haArO6ozFrv13Ce9MOgpTCinxMNDuK62Cha1Dl7TGYW2JWq4TJs7OEP8jNFi1SlRUCzAISpVxsFWmGpTaVSJKxCVw7hXsDNlumn11VlCbv6Dok5rXXjEyylZ3n8dC9M2W/8TUDR9v1qwKMnGVFNp+tX9DMGBQNiWle2t1AiQzF0shbhDRLbmMVxlPmHeI2yM9NLlZsHObZsevu6urZSyKMw1apuabdNzCkP+GVQnMLJbApsyckxWzgAolFFjSNoB03cBXGLH2ARSC0UmahHTZ2JLbbMdjgMOlvD9xLpzTT8Uwddv1g5SwrLT1p7yLTdLNeWqAZ4JtDcAuzyCznh0XFt+Orv8gHEYixeNyl+v763Z2ulQpxfU3bndVqeLW+CvHbuDC0XLf1koBralhsXWV/clqFqrgZVp6A3+1VS367t9R/5SBXV6388Tq8ns3glJZUKXC2VLdk1239JnBq/Ljh1a9ZEK3AftJU4NB+StYTP58PSIHR4k8frUiE1W+thyW/DcHw7x2klVphH/uY4sHCTMv83M6vmPY67AMNydomUslaRiqMn3TTOD9L0jY7xtl7pDX6EnR7D6zL1xSYuFrHPohLLQlMXPZ9SbRFAxNJ3yNLaJ/YuxaFYGcvvBxNIGwHbb5xBGA2oKlPWrTRkmlGY/91Tm/8SoDxIO2JQtsC35IvPbidXfz75e5SNHGXkK00D6neX7kwN1aSAqzdptBIhczqSk4khbRUm1Yk+TBCSh61l7gYlgMPnyEte5LFYZcRl3PSonmYZwVFSNNS9wdNcnHHqYCZgBLq9bVk1UB8mUgL7PszKYClpGAqANGe7aHK3aNmFKUeBwI7Ucxors4CC5j6KJX2TEvnCYmRYv47e+f+k0gSxPFPp5vo8BqQN8IhoMItIMqBKOsDfCsKoqIGFU9FRd1z17j/f26HuYeXu/vZX0wIYaZT3+qeVNFd3fOtSo3xJnuK4sY3AOJvTFNAYLa3yx8Bxvs7yH/Xi+Jt3ifJzNLfLvS22bzwZVFvvWwxePomhAcTHiSVI5RxuaxxE6LvVG+BJMUl8434pan/0WQCmlgX31G0K8g3bZLmpnlDW8a8cXeH+hvF/LHsG4ERi2D+Hik+y3/2Yt5MnAr/oCv++8ObEb65+OeO75uuZX3IfyD4F5BvY3YT5m94vf5xRM67MwpboYDnBK3Z/+7Rd5CMrnncJUh+cXvvbcizqTNfC9/MWbe7g8F9cDvmNXgKhb11pHE+5+97d5CbLsedDcmuz3t+6DCzM864PK5Z01AuQoFAB+XYRXRu2b0F/yvtNaSouxw9G4wc6d7n8h5SEOnFsnVJ1eXYt8C4gTIND6MXlftTSzHUSBrg8jZdPlghn62u328Yetf8jlfGO9HGSRIB9VOwXOmBJ38Vkg3dcwaXDzt3SwcjxMu5TEu9ro5spt3Nz5fPCNlxOxojYJvXPS3XKxJAcHobaexbmLjSvVUkkTs9d4L80THfNKxWS81yRk32lqqCxWrppnwgX3pLZwjBS9nrm0U81zYrlV0E1hndexYqwmTI6yogme163H1nDWEqsjVdHl8EnjYuuqGWEBTWPa6+M/6xwnrncxBJPTxaqD8wZV/7Or2eUNQTrWlfGC6ztdJQndVE+aY+rYL5zNf9T2MoV6g0aT9EdKrJ7JyN6cTNdD+XG2Hdfbk9l4Vq7HkqY++ZuZqLk1PeR6SQdPwbhc2vXAdX5f6aBf8Nq8Ea4Ve4z19ezu2h5cvxmnu4hhSMBt03B/T82yupGZgq7kw5voCezjy4ot2TfuweKVBXn66+x60p98HXStQK9YWpzrBlzBdszk8gGf80isV7XhjV56a4TuxNZ4eT3H2ab23+XOdiLtRuFYaXR16jCxdyrYcMuVZGh14Z1yvXl/6hwp/M4mywd7JFJD0zfWCPsBEslp5W6LonZysBmPzp/qwzlG/cFn8q0f9p//l4KP/9dubnU8g4+wV9ifFUOPP1fMiCci+Vai77JSe521m/C+KxYmQr6FF/Tj+R4mgk1waPY6/f/PmaWmwv0ooFPmJ03v1Vk4BJPz2L2SD+aWrZOQ27MQvCXAJM2r+i2BguMWAoFCtIQo9IJKWEDXcbxb2bTTeSxhIT0VHQYpt/sTEadwNfcWRNPykr/wzY0iv0c6wG49QNwW8+jsJI6jGryYfagme/EMy7DGnJ4x3JuSd4GJ6GYtmMcHUEk0MFuEwtmkmug0kyXeSfla3OQyiKDsjXwRZ7wdFEEs6iPCtw7IadgEA6HjjxITlf45sLyUniL7st+zUErg5YE0/kBgSRTacUFKKzHHkU+O/BmtthPiBBP2dQ9aTmWISzNJdDJbg2HpuOpBqVBecEbCWsBPZQLFWQb7gh+9+IfHqA1dQGniwKX/djhcW7zyCHdt8KivM7NC6j1ox9P9RN5xQ7R/uh2ClNH1Jjz4XGg0OoXOA+VPklg2Xz272nzEps1ayeE8j9EPu5wZEPxWrCZDnE93rrKfOFurq9XEOxvx54RbGdsNEs85LTCA8ErwhOopE1K65FghFwJ85DXXsPYaBEt9hySslRBc1QZ0BedbFyU0bjOQAjh1f3YTfkj9HMoIkJg0VBY5+Nn0OVivun6eVUBKk5XgwCn2RtHua7EA9a8Dj2Q+s/zcjYNhrNNdMuBdbgKBole7lScf06++IchOyeqnEvNUX4BGnLrRgIi+gdxFguDrXgKo2h89B9KmA8NkXfIVT6BY2Mm/bwj4aYl53ECJL88V/5KkrF8/XoA2deIYkHtdGEVUj8Cx8O8r4OIhCS0549g/RuoXHswd/42mptxWXXfbz73SHxd5AC9wGK9jrbweetVuthpOT9cviS2yPrRmJNryzGNp9ardsJ/CcoJgesQ4qe7O3r3JSp5Xrf/ormdaczKIo+8B9ztcZ00BB8shkFRhQ+c55peQUTwQUDMcmMJ3N78gPlcR9FfgGsiR2kWWVQGl+Kux7xwHl10tPGEqyZ/8j5Ay68BligStNvjGmSwwCG+a2SdWEW18nXYSHMaay69aMX1p2cFUm+Y0b1BhNWQ5LVDfFdQ42UTMciKDYdg50INpya4DjMRGwWdpxKcOBHeo/6P+BOcWfMbYTtxBiKpT08N0ZDnGYIiSUYR5q9bQYyD5noBPuPKDph5teQhoKPTSze/RxESA4SJIdrCOHskL4d2OirVwi+dwcGJxlJbJvG2HJKhADvAdhyo5x3UbRSciVoM9MXOLdQrK8hJRvRCQybRJhasjkKMVt/OAmuLBYzBNkYZKiSHBr6pudMRsWXBpRii5j8iM9Q1UGvgyV3DSuJAWtqOTeLYWNm5atwE6EcT+x6zJPG8cQle3kk259m6Rpx0J8Frzt5WDqA6+Aiq+kCrM+zmxgZKOsEEMSN+qN/bTsJyd29IS7IF5GSXWOoBE54MdwhG0JRmefWIQXFilm/xxLcNosSDR6bv8Oh0RqZ2xbBHbMnlYbhZGmFqWcytTpwVDzPJly5bfT0I1M77z6DyN2kmnAVufjlyhIp+wRut1WLb3PvIpn55ZCHtEQymVDwOVag8PMhYzuLtqFbLl1RG5nosrY7t8TycEbYNqYhXBGrB79VB4ygmDb2PPwNKVC7EyrpznKSB+85ltg2t2kWU9csDhmCs2zYR0XJnzIZQPo8VtunohjfKHAc0yzP9isiqQjsOqUkmx8Y88ZQZISHnBBEUhNirk4pNPyZjFONSyQvaY3W8KncdnoFJ0OzcmpHY+C95SYquCA48cOTQ6ByfZL2Y2yj0+zaV8RKIK04aplk88xgIMOnIrlj44tzXKtZbUN1kiGfNOY/hesAodK3PK6jyB8jtMQueCrKWlthMqHBcuyabfuOiOejI+hlTSvVBM2EzXo73OXiaDCWTEKtHtpvKKSSoHJfaeds1qfh848V1rs7iFhK6OGsotf7ltNvrIIpPehx1BlNeN2Hd3GKXYQks4bkRVdQjzq87inaKf1xsw02V0I/ai/AU8zpDcdhI+Fwn9zHEYJkwBk+nn8aOIgrrYczkl4RHlJjJa+N4jqTAQW3hmAJ8S0V6GXb/JFhMTBKP+j06CtMmSg8hKVgr4ekkh0YryUc7FG8R7HlFxRTgf1qQ1BL5zIISXYdodZj+tVMEaHOox5ng6QjCUqfhHbU//lxBpp3UPBY4CLl9PoLyF4q8KV4w4r9GiGwei+RAvllzuN8VCy7gw73GK2cR5+xCnybMKLX4NphwV0FWyAOJYcNrr0Jj7dlPrZdXUHbGN2VoSzhcVzAoj+tFxtnRM068BGv099p92n5ERS8i0yE0+G9xvNHMh/eO0hH2n5n7+xenAaiKP473CmSFFGCitI+tLbqi5Ya3BUspWhx1eLHi4j4CYpaRNTF/x80yZBJBkHdZbVCh03JzL3n3DNsb1vC3JlOAjp+l4HfxC2fJIikk2Aidah6JUmRGAw7BuoOJCGs0/VrUYZzQyJZppgA4QYZUogilWxj51JInSfMKuAPRqtXgo+7pWFhgaVwLkAoc6iiT72wBDQemFTqrhVLg0qcGOWZcKmEMgl1uwVNyedKFd3h0krEQDKuX8UkLBPCwxE27TvEeJYgKTOwgtJlNDtCuKejgj6hiBpm5w0SrjPG8ewMkii6hReJB1T27XGc/z5BkBBGcZa+sPYWyaZm2RCg+FClytoYqXGqKYSHW+nXhqFwi6IF6LRZ4uIo/xfVEbXNbVQIgGoMsQpj90YSV4oFTKg3EYKIOooqgJ8rwdCrHQTxJPH27W7U/z5BhCSVOwjE9Rn6+dKSpjnui4CD4OTttEbbhAScjxUbROsFmqPBG8XcrZRDLW9/Bdl1a6QaMY3vBTbiTqw5VkIjDtEkPc02PdiABMEjJ/n2geKvikz+2zjbdsgEESAd4P93yGoe/SH5Ub+fgnD9hg+HTwRJbZ9t4rTaRiRIs276IPkRe/4u4I/fZxJHUUInCR1NDgZ+ocPg4xFsW0+4AUewiXkfHShBhFtlaPN/WwiBmv3BytAvMLYaoD/5KOhMkX6R/W+GSP4+30Fq6os5t4Xof/EbZPgxRahVL2fFxY23mGStIrrmmTW+ITkhVG9r4tg7m1GfFU1l8lBRAsTNTwnR3j3BNYQL2CffokOjgy1A8RJDP0CQV9lUEnh8RVfFWVObxZPLL11AxFwCUAjnbU7GwxeYaI764Kaau1jZ5T04eQ0L+KAPAInPt8ge71Y026fBR5ogMu7eFmFvnPpSuVrJ6tSJjnIKgxi9b1g9asJ4cLrCGQRmeQaRX8N4+YHo951E7QrxVlu8v4NJ4FkUCTG1S5bMmwIEAr9XMn/UECBx7i3WmiOCZiSMOyeQhNpcCKE2QEweI049r0lrSdHT5+VZX2zs18mYx0+v0qolBuEu3WV4bFH52OZ8H294O3BFoVDCYOpg1DdwI735MvHL+oyn6z7CyU270M0zJNnOlxkikcuXSJz7jImkd7GLxGB/r1htZUKiv7/Xhay3v0RYwnw3wXhYmMvAFSXpAuFmBcu99ay8F2iWoKfrWyWtJDDHaAZut6DrdJLeaoxwTpOFyHr3O+AcCJeKC192rIRMFnhI4bTKUDHjPMW4/BAT0/W9jiRhp3qjd30klr37cyQfHnfvB7dEdnHF7a9+cqP1a4fKSaQ+Lxi/fjPLFzBf3V9iPH4Eo/OjdJpU+bIeqtDLhZGKsDmStPMu3b/iiyuH78Z75zNYfGfvTJ9SOaIo/uvqthQIywjDpgREWQwokIAo4obwxN2nuJS4xH1LXEr//8osL5up5Jv5JFUU9EDfc+9Un+qZqXvuXTEAJbtlE2sunf6juaqkEe6h28IhxeAMOH5MfF5wfSBBHNoAy5Gy7tEa175k08lAaHfW23cF+wVI3AQLvV3UVukkGm7XfaGxBRif1aKTA8zU8pFCuMyw/l0oWmElqLs9Kdjx+PxH7mV7tVz7C8lbrrxaKHkKx0cdn989pFrf+UMrBE8ZqK3r3uwt5E5Q3EYFA8FCNPMEbQ3BecDlavr0+IVdwsCnyP9ypmXKa7qWWYLd2Us9HFhE/LJz7X7lq4GSbTAfMYELA5S9+g9vsL7xrGXWX/RCZhXJS1Qf8y+y0iobwGne+jyhR7Y0Pbllp52Hj2a13nl48ldD4UFmbHgqms8f/hGu3FroxmpEIHBMhXzhpoOBlhnEi72JHhfuC2Ffm7a/6k9Oy+s+t3/l1tPRve4GQl1Efb0luKhPuTfp/8UYvcK0z6tp1RvL5mI1pBWaTTj2VwNjPWrru0Dojh1/1e3u+aMfyH4QNh/Z3b0vZF4ffMF4+5MhHyeYOo+l2Pv+0Tke8wzIL31DbBt5g9wEIXKB0M+g5Gf6u6OUvPxpP+EITOHyv0ItQuOnTorcpINyaOJcHJhZ6J4cd7EF0OPWToNec9JPOnMKRz64/OFlpH9sl6Vs5VxWYjPkvu8mpK6Dlkex26SSuRUmoJ3dXg9x84ywWjBLLnTwBobEzq+XgzyHIFSYITG5xGLM96WH2/gCtGbphoVgV6cUNJB7U/j9Q2L11/txNrywnGzgDC+xPnrsUlqVp/DKuShFwNVjZxV/fyspB2B4DpGcp2XCJxgea0N0l+XJNGYPBSu4k9l+FicfyI8+JqRvFimkYf+A4dg5YngGFW/zNbk8JC5671xO/zU86w7asRE8oZeEk9aNYC8phPdZ8GQmeAooHEkGft5Dji/ijD2xk20cuDAGI7E0km8yrk1Ej0NkCxPC6A2WoqZ/ZjV+EEGQvAZBP0MozzGkkkW0CxSHblR2jR1Pf4+zHOZr1gkXOpJqmU5BzDm2oqxHkbQDkrMNFPou0wmDPu4lHEzZy6VtJ2z7l1DMe4TwLGHdgW7Poshp4JtCsXFDInuKxLtKoYQiHXcR6tqJ30H9W1KSIHjIoEm1dNgF+xqDsQqSYIdbU3Qi3Dso6m4q8WnjPZeKVZyudF9xJtaAteSIYFuH6DpzM9m8OUtxeUTbi+TGP/M7RvMIxZoRrVCJ8bEvNrzk5oTp/sIJwXUcbEftRPy4y4QvU7hAcW83Ktja4FvejkoUze2sgMCfQxG5YCFWHBlp9y0We5dRRhgzCWd9UqwGEIxnDkycR48QzMQbSFTix+QQdZ8tI3CdJycQ3/b87BpSUokVoeuWkotP5eEHKgqbF/RnB+AgOwOPAUv7oZjSqYQXqWaifm/4F66PbLWSGAmf4s96Q95MHi1vUqEG/h0Yj/lDoVBseSjej2TWasXKbAkl+RIeQVHSzB4wtlBJL+OgWsJlYUUPWTEJOBMeT8XGUSwFGI4PIkwx7I/R3ucEwuoyU6HtlopSDYVeMpy1FChdppooVpJOu5DOdOacQp5cX9Dv9UR5CAjFZgtlMnOoN2S84g0VX0DiXbIDm9P7blIWhvTcoshHOT/SC9kxFxMGfA+JpNsIOXaViqVQHL0hTVpdoywBjLWeo0u2lMXXM6xtwtCWXki6+2mdYcRSNGN5YLPXcGnMx5IXqbicNM5tskV0DwdpjwMh8K2jODVwGyd6Iex3ENlEWYO4V/KtdNJCvAdL5m9y/A1lxPFJkA8iiC2HGEi6oF5AcX/DSnJESPzbbAcN5qRxKGlTYDE5Aadhx3B8QpgHXb+rqAbDRWgHHMqhFNsaikS4gRQGF9ZQiryGkkTXqXuRNJJOR3YFnIbttMmLufA55SoOjsfoBqRURO45DgnFQnwRyWnW1qA/jTn45QaFVkeY29vREQ4qkym8h7ZKUUlC+/S7D46jwmSQ03TzegtJcAlhota90mF6uWbYYjg8SGjHbgoU8gqEZCg+hyKYH44dpiyLgtPkLAPZHiu4bkhIYZ4xKRCBrgVv3FI7IRWesBfvD9rsnuI0s5RiM4Kp4TKIjLD0WcFXwyUpae4iEYFj00FcyVMcPNeQwhK3O+jorGTmp3lu4fSsYQy60/yyhRQCMG9BLKjIFBL/FSyGP4uffBxBDpJzbPtQ3HSQhLrk+pywlByhuWk1xJPC1L8OQtovBXkfE7224m452w89yQqPXiRWswoh6QSRrIetFPWEOd0YhZB0ky62zlC8aix7+qGS7CGvo3hxW/uBUN4tVpNKsJIZ562GpGVLo7ajtuUmeOfB5RmyZYWBGyTaLwZzh1Dfqj6MOUGb9y6DtoG01Fc7kPAcYPg7Qn1MWrbKERRXAYaz4wgwLwaFLdBPwG1c3RxBIptDmvBeVn6Ys+u/u4Wgbg0QY3UT/s0kt+I2YBpG1b5Yc6pvMBPe43xsBjYuUaxGsetjCITV+1pm6/a5nVyG8UlrE+iJpWEus412Aan4Kg1PArQSDGe69P8oEUiaphmk+wXGx1Jw5/58zPtRgilJ3g/REsIRT0Oxt0gt3KzfZ09xxl7gMt79uttlKYvkvonCW0JogXZ3Y43dAoqvYbMgw2qannDkrr4xwZfR0vFFJmIvzpPkw2GeiR+mrjY8p9bje0Www9ro/h1lL3Ztj8smbIUf6lujO8zFL+8uxp4g39ed3/iuxFG+nQ8M2IVRtg3/JuAqLCQlL0WPe+owWO03uCmRnPduPty7F1C0fsqjjLWeuyrnKfYVoZ3Eoi7Dkze3h8/DBHIoTlqcj5bunFOd9n7Ari1xkjm56iTv2Mo+5G76Gr/DO93a1erGAgff7bZL2W+NecuZ7nyw5rALkGzV7NUeK+X2FiQtz1XupK9CYzT/5MjOo9DP4LVv76GzzULvDCbhf1htTy1BIfSwP/vdhP1Qw91+jYwuUA1c5Wu9BwyM5m6ZDZmDCba+s7TGI5MrSEmjdxHqARSXkc8rrI8iiGC+iyydw2LHBZUOI9mB1Vp+GmYuEuBYD1bPfuTrEpLXNEJt/giJs2CzM83hA5K7PXBtVh9holVo7TvguHmztryCAMHIZsH8qdJq5nsgcbGIEKUhHPnqHkvHqM6PSLbXYPHMgGkPQ3ErUkohcZZnrxdehtivtaaKdr+YzSIHHSV4OURS/0rXO/62dawEt3vW4mrUarkEQtK+diEEj5p+mWaoJAVPdaTt71BTax1KZdiS5FaQ9UiZ+VrruWJhiG4q59udgOnnZnm67foGLxk+CtbyLnhqth4WXhAmnqjPHl0JVGfCtJU2IdV28+RE/+GK8Y1mfq49gtyvbo9cpBCUGwhWC/r9F07XsSi2H6xuVGD4vrlePHbarbzeIqXisYvB+2Zuru1E5arbFK+b23NfnVidsQTTm1Z4y+tIjrsIA/uTIB9AkH+RTn3JjiAQ4n2R9f86+OfnX//z9wl/z8X4K+67dlXvZr4D/GMsuf8jf+PPo+/kV//mJfBuZH9956r4hxzqXah/gxeStzOEILSH/H3+310Q8C8uiT9x3um6/uHrZ97v/yu5lX/2X0IoOr+xd+VPieRQ+EsllgJyNpccwyXiCIiyAi6XNygoKl6UF6uO43isjuX+/7Uk3dJNW3u7W/uDllXdeeQdSed1Enhfng2MqgQREqQ5HVpPJJSXGRVUNf+U8ogFDaC0L1GIEQyUqgTBRfo3IH0ClctEGw2jGGN57FsKQtSqeJVAZBbBq7RUsXLAkr7FnFXWr1c/0DghDK8FTasIzBfheOcXl0HmU+RrW0n6HOIyoEvbbKLh1xgDEC270qaPuN7/LpqX4u4Y9G00+B8nC9Ec26+jif8/Fw+se33/LsdKJgCil6Er/4aVfxlzosn1NFhVV1wqWKtrKb5T+P1m6qetP8bIfGSS+n84iPIM9Y7wrybCI+TvcPxuGKvy+T+3Sqfkj9Y12iRwuqPa/27kP/lAJf6fHETnH5CXUO/wbN4Rn0dAyZ8Ydv+aUb+pWJPO5LdE/FbqrLfqtctSoqG8ddYPf/lPHWQgefOQqb8IcOQJyP/l5UUITEaQIfbbb/JxA8i7KJoxgehIRoWk/1OxIDDkqRqmHy8NHguj9w99N779kkNzqzfG4QD5PzyT///f33QQgjfHhyiXlXNzptEURYpkFXSgohb7oJYVYv9OSyd9fmhukH+hb1KkqTVEUZfr7HEC1PeMnGRSlcuM/SJz10AFWWelWk/9QKec08bbJbndK+lL3akmFDspUECXkE0rmmLdA5SXFASMew90sD3qlmboq9M1jjcirpPt5O4CMH2kJJKrHCeTh36mmKgxp3qiaSg+zkL5NzDpIOKigpoEkBDVU8d4uwDCCwLkRslrDU6k2PWDoE+gFKo3KCK143EwqRoUAkXbpocxDeCotPzyPfUtIpIoIelWePRYLhG2bhJCqVYCfasAGotVGsWGReCRKDhOQyfbEJ3gJL2NvKyQRYBLxewH7xN+sLViB8VlHVRmVBTZTks5SrUdJNxmyrZTtPT4ym6GjRMwlEd3zqsjO0KdtgUVb1YWrijw7+LjRN/3TsEWnlkRWIS8iFF/PUNxJhRTnqMj65BDGE155WUnzgw02vP9JYA483CcAswknxRIIOrlw8LBiPA5R0+TUbAYZiqyIOaQVbBAnCgExYZAnPWusWmKAXAhkf217gMK+6DkNaeuwgi60LOR4tgOCka44JI6MypWioom3lpZqmMmTmTmcTLgj9MBHgiptBsg4fyKAiQjELJjBnCN2l7hy6shSCeKbQtZ7DoBGAPTFBStMijvliFRk6JrkQ92zJr6/QFC8c1JABqVEZTn62A8voThacokZ8plDEK9EZtORgijclfxcOSnj/NK3/fgOIQfPBbnDBa+eMyTm8Dh4ZzN+eDAfSZRaLPzLHAseaxzThNo0ieFbkHmFg8yzjksZYYLd+LxvrzMZszruaLb00DHzMfQ123xaJtuT6KMWCEAnNxhuZq0WUSE427GGkwB9cemp2W8yQJ+mzXxQPFt7tglFXjsetkqJfbQGfN5xQIExrUscOZaAX7crbWA4gH/zV/ELx3s3XhcgbLLeW4C4gW35N0AH08kNUuE4Jb84k8eb7udzxurPiuHLs35nHwi4LLbVnfwO7C0vTjmsSvZE652gaxNsvzIcyFs+ZzeZxDWsvqCdQEkE4P5xCoFD2WNNSBZ3rc7f2TArsfj3LLkUd8CwjuS+eb8C7BozYSKCN+N2McivFuCx8IPd31BVxPjVx6ndw94bJ5Zzyk49KWonKl/0wmvjdiK07BsguFEAi3UQPFQB+HqX0SGk2bLiEjBFxqjsdUR11r8YwZ5zxmEWb9UxmeIUboawtwkgWS5j21+2kSlejod7gbDOIrmsDQ8BrTsJfwiwTFv3yzVP00P+cY2N8UIc1qeS1c/7NQWbDaUgl1gk79jKZLOPI4SRlgfcDbZwfGnPRO1u4C9ySWcDZdgSx8thXPzFfhDz+iOdvF1pJ7PBmeBbWfEGDDEo2USn+cLeJimNrBgmcrz8Nm7IqjlXgBPCUX3p1akYwm2Axuj90B8YgiZO7B0AzvFMBreTWyM5rgEEvVMxO8+3XXj1iJwU13BjXIybqODp+EFHH1KXsacckwVSzyhFE0xdvO5g1PbAr5aAcfmNGad4CHolLcu3TVOD6G0OQTbKWhauo3ff6phPdhAIGoVSBGaOTch+fMuSC2HyEgeB+nbdXZozuI46AABraUfvnVgOy9hb2oFRW9qaVrY5D6Ew/hwjuxwnJ1KT/c0Ei1RQ1a6RTYYA1j0GSlZva+MK3sMee8iAsPXpGh9vjV+OMh74kHmRPA0B4BQdObjlXk/D0XfBPGtAymXGPEEnhQa6XHgJEFqwRhEGhn7mbxXDQQ3gNuQCdgqADwK3CngcYFoAKhNBfA8eWbuANU7MByaRYA3ssMRY7AMhpQNRHoETIldmNsyoCrXU0GoGImwioXUeHQDre+ZDR7kbV5HzruApF2M0y0rCAp3IES6BhVss+hKscKPAJHOZMGUIhLscNdkBAfnuDYzgsM0U4Du8KeNcHHzHm64UBH5u7MGhsVJTFiMQDNqAJE3TMbJBrdoOhjpJ09b3UZkPgeR9CS6C4axr1iJLuHYCdL7JMArYsYbw9Y5EBOwgakZ+fz4DaDOa4UTfni3XpO/J7xO5/yBwHzg4oLb8cnpTHsngKYPFN0oi3P1BCVz9mGNEbg4AMe5hS/7H3FZ7xxqYrkFIyJtE4M/Qa7NhCIbjSMQjYEjm7bsYAKo8GXE7fHN2wRMAtdmlLxZzklx5iSM51NmsKXAx/e+TQym1GiPwSsxAvdUh0M4JsCwb0fzc4+e9jK/gDhVZ9EYtVqtzuFAKTHNkY3fOCyFUcTmnT36KI+4h8MbmTGXPLmO18ixVGUf5CPYKddJDeYGkA/FYagXbdbhGo6d5i+8PbLgLAjlLK/4ojJWp9we91RR3s8/FNzBGziifpHiQ54d7FgJ5bi5Y7gZ5nULwNOOyzfcxpI8c81W5T1Oc62nkSNNwNCNknszCIF1UWDAPE0YcO2kyB/00Pt2kdkXbdEtZrE47U6OE3jqYAgEY9nQEKhwuOd0J9tZNN+ieCBwIwYUv5Yulx4yJpx/B8NRRlbPUzH67KCYGZasVs/oBMTTJPiYQ94PD+KNi+Bp7woMmHNzGCoTW+BHHzjUkA9gAzgoyNxcCQRiJmTaYLhYw7qZ8D/K0xsy+BYBR7QGfGlVggE5FefsUI8hTNGImscJT0zI681h9S7co1dEHrKeigb2bSuB6ekFLHpAkfOG+cBiDLvm6ekeWU7DJEXOX2Dx3+yj6QFW+1uQcHQZyPFxtieBuQqNyrXXhDXfhdNIsO/igkViAzEdCXxRJdTB5FklEIiPC5RrtB4xeY4EIhEVcfgO4S+GZ4uRCNBheq8i2n0l3QdmQn4kM3LrkmAUtFqdqDyFhrhFAkXcuuGjPRTAfhVxbweMo+s3ve2cw3UgMvvCtc2bH5YnJBdQ8kZgwOMkx5op4W1XIkui9Tsmv2EmNA2w9DMYZj5nYb6Ggb+EMlw9xWx6zhsDFqV4r6tKyIZKH7+EvKeDUDSCFfHOSpj40Nnk2EGGmwuIPGjd9DisSTAUXTB678Xy3BFdloGErQflixrPI1BJZ4HapJHgaG1nFlTQ20rC2fSlbws4nmfAt5462wEXRGE/AsNSNIxWFcLTvjzIKdIM0RNQiqZFE9Fr27dRVH90h3kiNWq+Fox8McR1HrpAsfOAxTQlaNlALQ2EUkCroP7eZnkGAhxf9M0CU6Ih207AJneBy+AyUj02Jbui2MIsWihBbThLE0+i3fn5PPAYNWFMXsWYj7iNZ2LNZgcx34KhMMcXewzbTgpbErlgAKgETyAlOXDyGk8SA6wpWbdYDaaA7HwWhJkP5SkR4M7XBMNCcDkeimPPDYKIJQyeF0+s03A5vCHUE4JMWaTWfZEgHK5uAwewf4Rtvd8MYgo+BNaf4Ehc5HfNs5iZCgDMewvKB86sHfge6taufjgCipZurr6Op4SBI+CycGU6AfCRMzUNrKdB+fKJwj9iZ/J4355vXO7toZHYwGLQhJ3hA387dAscjtx2zspYmcqB8UkLz5+b2dsXh7x8t20Da5ZIrYnAyGx+oq181+wZbQCFnxZBo49Yni9hzifvnWwy2pySHv1oanlifzSFjcQQyqML+MYFH/KJoscyBNQlMNyNAS5pKVd+kuFHs526z2vgUxtDawxUJEY0ITva7q1yJinGzMu5cs8hR3eX214XHIkJUeeX0HK3jOZwtzE7OoflqQownvCjPTLR3frcwsI8Pz7lNLvu+hxD+mt+zzVc6tWuRTA3NXF5sidcxDhZA4VnLPvk24EjyAUDBAvDqefb+mQLbQlIJZYjOEp8u749CDaQ/3yU3fP0zGv11NdZJRjBxA85REa3RFdtR3MdFKWPJdY7Hvuz4TP7boGIzbq6CWzcUILS6gJKYyVgn8NVb6yFp8McMP4lbXU1cMKh0MvnBjTcbj8X4N8hBM0tUPzIZ5/L0Zq8UgC7Slvt12xtE8RQqMFyf+U7zYECqbTH3kSkaADFbBkUi2Ypk8LKWByE3GwAQzcWaRaY8DjdBw4hC6ffQZGqGrGyGsPzV3BG7jlXiyD0dAk9gxcQ3rEW/Itd3P4CGKvrEIKTBBzRfgeKoyNQtO6BofO0r9CF/GVtJtk9BltbAsXFmXwayy8g/JvZ1FMZMO2krdUayJzV9vi0i8BqWFjkuLNIFxg/tRYaexvcIoKZogmGC49rtzmBSNEI+N2+742kEU8+937uiGKhKB2B7fe65Uzo7th46+KrnuoZUQQDBJf2jNs9tkuQOgICBU8dbV/Gbb/LgqIuuWc3D4FxoT53zoCdF+BJcrqvjMi6PCdYe/mYQd7zdxDCoIlBlS+DoSJQbhjFYKgE8PZw3Z0HUFGQGZS6FF2vSY3WoH0hsnjKZIKqikCYRnQ/E+pTz6gXTZOUWopg8Zm+OmHq78061aoqtd0aK9Q6wjiVCmjM0mcfUnWr8ggYA3QZgPTtGCRAVSTUa5rKPrYe/8oMovpGH8wDNYCqj/IRN/xe9QS5vsKiUBmbcxsEmwpZErxiA8v0UCY1AFaFMWlUqZVU/NZA/IrOb4St/KrcvwpGvz06BUorqPYz+aLwqnWVflAtEuQBjQqbWk106oBd9NUojeEDOKp+LO+r3QqPiuTqi9T2IwSeSnB+nGb97rFYOrgnFIqmRFSyQtPGxakEtKLFCq/z5pVHUdwC1aU6hMyoJ2htepU1oFa56unacFpVEHT1NAo0IbjaChpZal21rJs5VareBK1sfReKgsIAPRiL6GySy2pl1SpNg/oKP9ZX7+cg7x6EXvqVfTs2ARCKASCq4Cju4f5bWVl6YPWDvLdCuJAm18v62rfzMDk++Vsg/hGYbHkgz02kHCZaHghMJhAQCAgEBAJBIBAEAkEgEAQCQSAQBAJBIBAEAkEgEAQCQSAQBHKzd247asNAGP4tpxeBuzxBJOApqhUX+0y24yTOmZwgSR+5thO2KT1I5YbSMuxiGHsGycMnM85hXvKS38jfAAgBIT+Wc1q3P3bj2rUeb+X25gZre5C1Huvmqn4VR3qokJubPq0CM/euK3I95Y1T7i+gYycE+P7LbDSrV+bFGqp1qbW1r9nf2h5kbbRoF4M1Oc856/+IkB9vuPK7L8xTXkH954AQEMehc0O+vfF8z7Suv9XiLN0ghDrOMjWU2mfXIYuemKG+t7q/HL6psPi1TpbPuvoke39rvdJX4bAHio2M++57H5GBibbjzO0StysZ3vt283x83AMIQZWnlGA39m/AplYFSFFnKutbF63MlFJjBTSqpgTJOH4GAcG+6/u6TiuvzCpQrc92jhmqssEHmrQv63pIVqohP4FWpdan3QZ1loDAqVUD7FI9apzo1eXrzkAPEgLnMsZ5lkVIsn4DHPsscfpshyIfYKnos2v4Mz2wf386Qu7KQSIuj0ArxAlIGEtQcM5iyUWHSxjHsWQ8QhEoBxiCYV4hhpBrCUq0YX4ESbXei5mMYxbW8HPdJ3hQEalVkoUpQR9UqAQ3HcyHCksHcPIggq8E02bMW1zWTzfp/4gQosPN8jEPKzSh9IAuqOFJ0aAKRtu/lSLBHH6WZTHfPV2s7gLEU7wAUsYmoBKjg5KXu82niUm3DVJnc+hFh0JkDhopzZwQOBmbmiiKdqB1OKDg6h1eziPHvTC5b0Remd69q1XUa2V8RBlWmERZaHVDSSZ5C+JkIkLL88LdbA+eYp0xOrxWkMcIASn52XU3voeE53t8jlmEfc4SnMLeArKP2c6CotjJcTefnP8DEKThGXuVS83GFE7wFStAdcOTKkhBcQ7TGZBB9xItsF9tYh+JZFUZtjCAJMB7zA9JqFzTt6g+5bxBGWhAgm7O1mkmpUzgGi+LT7hKNE833/+SENAyjGyADCAeujBdQngLiJ9LH095f9M7ALEra40m7CZ+QB9WSJjUdsTpw+I7QLzILiDzCsIr/3j8ZF6fecx6Bx80iEMiVPJ+PO6vzHwDZPCPb0cHNGOTLOcVpNdwUQvI7PIJM79/Q+wK0vnHT9QAEr8nMWvwK0CYjpX/hIjcV/4g4sq9BNEpOG2lTNAw6dvpCk5VUB8PRRZeUPA4z/kZZAZESSZ4GDsg2IxSNvNyEblupY0bEZtsYjLr8+mYdFx5FpCBS6Nv4IxhdAkqoiwgFeyGWW5dqhcgDxJCcA4ZY3LYIrHRnvCLFYTUQg+Mz8+363gfIH7OkpR5b2KKRLbBwQJCUGtAhAxCxnrfAKJy3n0AwsY0rQdqrDMZJ2YqY5mrTIoaEY/LNC1boxKBYLLCvIJwVWv9wQBSUCUTzYntsCvI4vIFyKOEYNNlmZLhGYmJNht+DggI3tMsy5k4PV2s7gLELq2qBh3HTgwwgBxB559Y4Xie4vgz7E+sRjKbJtgcpAAlRjDxmJXUAjJqVuo3REJ5lqSNnuRLb7C65iDWCFQDgoKXmdCAhJcFEB6Bvg4UPkyICZm39c68N4B8OuS8wAcguo8aQJIl7Pu9n4bd08XqzgI6HVe8BTqWm2ar+AkUh3hO0kkdthYQx6RtPyTpEcuLTFR2KhvyaU+0SnxL0htEPNtjnaQvgGASMY/0c/pK0v8eISjEOO9incPS+ekKsgy8BNPTBezOU00KFssEiJjJyyhSMZ6aomY5aTUgKHi2N9PmzBt/y08su82bwC3FGS1Xb/AUS0wnRcTjVvcWW9cAQs0el93mHUQfGXHIKArAV1K7O4n4bPeEF5e758v8/g0hIJHZha95jYTlHnzFT/M2byXUqYmKN0/arfhmY8adRnH+LwAhBO9MZC6wz0XugSCJRagfvMLlSwpC+6C1BwoJumB0jAFqsRwoPAeZB1pqkDwZNHb9xVF+HCgMG+AUZhuMX1q0IdP6kPlQQQGKEw8jbEoRChHyfb0cKHyVZ32MENAs4FwIfloOFF4C5W5MCBNm1MGEPuRmIyVhoW5EfHi6UN25gjhT39pdjP48F4m6DHXaNRRV3oHipAYk/UCBt7RM5ixt6vsyrSsv7QtQJGW5o93wBmLti7rv6zRNaJntADfNCnRjAedSGqNuQ4axgUbpPCaA15oPa8n7YIzq16kmDxICnLq0rKcG+FymG2Cb9g1NS5OBDrXddTl2uq2nfTulZXp+Pj7uBGR9Ku/6dE4COhe1pQ7B7Xmei279t0r2qLGDNVy8gKxL1t6UJlxcvqq0Plqu8ce1wU2MyFX1nIVC7wXEyrpw8VWzmrTbktC4anBrgPWlIx/QLf83Vpg1r9PdHy7fongbmR9fkP/qehBgXR/Vys1lTqsarusRIFZW726Jm+1vQbr5vA/lqzzrg2UdTyzNGhU8/XU7r0tuX/KVnTtIYRAGwij8P8aerPe/U7sqCaVTFMGA71sJgqs8s0gYGYhkIJKBSA0DkRoGIjUMRGoYiBZ3+vQrwnwg31svEE/q7opQbwB71gKBqmJ4+KpqmSFzRwKZJ4SGImRGnAl6EwQIw6quLfzdYvp5i4Thq/Wszw6yPRLSuT6Q4fcR+PUyeA39xc65fyURhGH4+ZzhoAIKCQJyEZS7iqCJRFpJF4rU8pYhkh5LS80u1v9/ckALu/0alS8svLP7zcJZ5uHbjzPsPy5BJ44ffpy/NFNOcXiAEuHStWa/GcxjYeXhQq8x2f3GjjLmueVbGMbeDCJNq4i7R5GWmHEZC8Kvpq/8eUAEMbpgPzeWvTrN+i8l3E57nf2hVS5Gg6WuNHcm0SgBUSBiFiWotsmqSz6nZ/g6Si+HJv2O/gIKd70ZgdDqQGlCI6abECwGEbNVKcqOC4zUz09eOgIQ28BE38SE88lzRPB0eVDCJSlm+mdjVxnk35Zw2xeE/fQOIohoAn4UdQ/nBQY9Mbn0jweFmLEReo5E7sJGqIDo5ZEIF4DorzlmKHVIM9zGaDKLQsU0ivIAOnaer2KaDgXEYk1bM9aTmjWBIp/OIxf1mnGAolqzWpBz7pUIxhi1Qs97CK1Gq6cyakW2769tfdN2RvV2JQNIcgqFY/x1Fc3DUs6V2lhn7dbirPOGDSIHbodnCgpzgZLraRY+DAqiOE4ptAjx7kWUgomxFiCKneICChOz/nZzFiVUvY5blZEgrAy53ZtC2bs25HCZV30w6XavIR0JSCQZfhgLvu/fdfQicg0EabuDIjCdjLStPH/6XZEnAnzfQaCtBPxrL6L/b0q4PZyDiDWw4UfjujHvdHzaYt9+tBhwbIPfGbTccPRSTpf2d1yTsHFLEOF2aLkX0RxnzPDRvJ38CkgqSjNE9y3OD49CzroZK/dnsgQyjciO7zFR+0HQduRWjPrmbPVuw9NldQYgod0AmoQ9/QiixzOIEHtzfem9DeEckN1QBCKNKIVKfq6ACPrjUn5z8bbi0ec50+5dupFF9GGAa43rj8CyP359bkaZzHz8iPha/tOCGKlE/unyXA4RcpX1rai6IqQzZIb6u/I7r4vo8E2yoSjPPCaTmE/+cISp4XmEgQoLmT3YC8W5qNQXHMlXOWFrBEQU46kWIFxU8Yo3/eBfgrwTzZ3uLP6XaOoOosUc9A6/58kLNKXtH87uOwWQKpp4ZvoYtrvMW91z186USiDtgDzq8m+e1Gon9gpcmz1ztdNBzWqXGxHu2k8DYAv35QZqXesc2s0ewhsIN08G7phWeh3B5p8+s13mAK3aaye16fu2qx8FOkLCfNHR7xzrhaFVxgZhzEUP9UE01RT7biWaF6954NCKoC+Iusj/uuqxv2NrogVIvu9rDSLNRXHfUal4HIrSBppyMYu7YQZZJrI30YvCO4Y/5Jn0ZEodC0gAzaLdvgDLtQOw9NVK5ejRbjLOJUDCxfD28cpg2Frg06k3MfXmxRxs1QYRwZIMPwBb0eezHyxXyQ1eL0/lu6cTELdmwrcah7PpcBW2a8Xx6srBHtRPrM8Kh+7Tz1eAdIRMDZJDEEVlCG8FNl1o1pwGkBFWHCKaVy94MICcA0LzpkVYGuGjdR7DkH8W3GtoMcIso77SvXuvQ4vceoKmEMrS1zCmaNnr60EZHj0H0cCDnTjSoYAksFT7d709wvLpKzPmJzXCvdoqStoASYefYL49disc1e4jZ1I8Ox1qAhKaNoCE0smZ5gaNmD28NICESwgx71ljypq+gxIE5T2ZQzPTXfwLr47xL8rUIAW0EuHuQMNtgVXDRt08BFIsZOIIA6stQLIjwbY5I4qdZG9PZgkljHY/hIF3KM4BUYw7EcXbe2x40DSsWVwbxvjYy0xBLHnIjV8lj44ApGgP+ULTtVAA3QKkVHupLBYZr71GpD2DWKNoxeDpGM9OrEdTIkp/B0hyd6t5kAUdy8bvn75qArKP1jw9a9SnU/OoM7FntS70WGwRRziB4kpf2DsTrkSOII7/O9U8GBAQQU4RkcMLFBVQ8L7AA0XF+1y8r+yurt//xe4ZAU1i8nb3GZNQ6kxPHzU4zG+6u6a6+x8XhhH9gNZp6G/4Co4r/UAIpT5wRN1NmO2LjG3GTchZRA3iTyC2IRk5PozoUq4L4LwhFprJtR+BwZxMTE2HUkPSskPxQ3CO6e6xFn3etOA1tGBBv2bKBbaQ6rpsGcvaCb36jbHQ5/THNPMKQDo6rMUEGElAmKPL0CBk1/ESkMHhMRHhfPiGpuynXcPRFH4PyCIIDL2b9obWT4bBAwnIFIieALlA7MGp2npRGNTLc3Q95OuAfARhaJsNaQbIVJcPBH4Wb6brS3Ac24wIb5pd2RYgNQ6GiDME86nshvgccbOjqICQc1rcrd8ENJ64w9F+tx2Q3/SC0yh0YryEgsM+fvUYAgpeu3cJOIl9dpk9vSAcezsdrtRHtWINXis6BsaeAbEP2jKPX7+WV3r+FBDih41dv3btAXsqIBPDVUBEFbzbnjwsNO+e/Rkg0cHhi/LXr18zZwt1QD6SMBCuHfTSmC+DCtVGhAItEidgRvdssA8nLEkZfBJCcxIEVumrSIUEVQcpkMdQFK3sWBPYx3Q1kZ10YsSgAYLZ3f5qk/CPAeEEWnS2+kP49gQIcfgMrRVACJu7jhFwXDy8AiT/qX0CnBghaNAP1DsfH0iqr7BgNH/DK7fcmntbOz7OoLoOODFJAsNAw4aMEYd3vaq6l2/BSG60P7Gpavmgb9I1QBgqgIz+GpfOZVwB+xNASAR6h1uPsTTYkQZhpbWrBpCzhzlwGK27L5pYNzhu6BoFgYwg669ldV73f986LP9R0fAIe9pXec38gFqg1llRhjUO1LAWIPQucLCKiAwVxrRiFQXPUcCzkg8KSMegDyTDhMfdGzCj98G8d/Ul6VoEqYC0BtqA4y7/DBhD3+43LF2ZmFJq6A4hrW/1lj6Pt3bIJpa7VQJS3I0HMXLZ2nUGjAx3pUTcwe4jWHbXn5zP27aAq9bBy8Po/pGnDshHEgY2PSBv4tfg1MobAyO0SK1t9X3Ds6p6PgIgOsPuYgWQy1+yIESyXQ8PD7v6lAZI9JcuHeB7aJ0AYzD/sozmX4YD/l8/xUBY0v/6y0NX6ehhAWhr+KUAYtgZ3m1wD3b0P2SB0ODDMYjg+eUSrC3b+vAkW+CYt/wqTuKpvwf5KPJcPeA1H6+PSWb6w/Ik0qTU1j21EQCrKqokvNLzkQDh14czlWl4F2NR+f+cHO7lC7rn5mRkPa8AI+uj0h6xFpvC1KPN2XezKLKiZX90MoREwQQo+R51la7ggc27MmH6egg07W3LlllhWfTfabFnYy/KZZducXKvNPXvW0z4vyoqGG+NzGBqlr8qD/bnbLE3FRC9TPwAgPzIQOSqJ6K2rY2vqnldQAvVHXk/mDCGprDY/q5rUJamyUo3hFIKqgNCXuQOpRJGtASDA+lgsEVkauMAPwkG0zvBlA4MvK3izMowljrZSZ8Ed7iqh7AXA0mNm1EQZAjVXaUj8741iForonbFA80Vvdoi5MQgt2oegTqrVqckAzILcRkFmcyqcZrqGnd3Eaz7u38kYQxzzc/fvvbVMbnvnARnqiUrF2EYMUyJPNr3XH1IwngUd5njoRW3yz9sbz8DoXf4Gpixmx0Gt91dAkc+oINaAITRgKvd4LA4daoewukBuDyjJQ+SZ6h+iBfjGT/+rCZMyJvpfwZ7fXz7xxTGkLAHUrXrxABir7qOaF/nUBCMQrxqu60KoWhtgykXZkZkPFA4CD1+0cfkHI4SjMRAnu5R0LPpmIy4jzdV1p8h9N+BpFKrQPLV2iQfpolVl/+liAf44+YKOFK+6ZWjJc4wlrFZV3SAY02ZmwDhc3FtOLnXi30TMFG2urbhG7LaetDUeAsCwRlTb2vCqUfiZLSvOXZESABCjFDom7SCgWW3JAeEaCcHg9LTaJ0dADYuDq3ebQJck8BO1jV+DMyc2qw3M0BsQXyCEib6FkF1QOryzsIYeNwX7DQy5PWXo6PDMSCRuU85VsEc+zD3gGDNJA1zqyfkHwB3NfrWoml3KZXPY6xhTwLS3yHHmzMuABE8HJoxdwqqAjKXQfsCGO/YlFZgAYgCQnhjf2DOzrBu6J8udKwDriX0uovBR/8IEpmroGsOsIyCYzWLdNdhHZC6vLswwpWLwVsC9ofbgLxZMEO4j5O4u/NPaSn/WFNnAjA60jjs5CD4AkZ1xW+SO75q8CyCsUoNMr6ORYuCZ0AwZtlBeRUEIwdDpQZhTHrbp7HsAMPaU5R9CZs34OhLgoOw2MllqwsrF2BN9G/og9TlvyVy7pHGXM7TCIw2QsGVmYOi/St9dg7HPmbci9gcR8gdBDOaB1DOghPhLnCaAKtYsZC6M8wawVVA0Ns96rvuPgepgBDygahv2d+m9XCqgCAVW/H4B9A/B46B7l4BiM18c3SnXwVf7F+xmY0iiuPuAPTv6KTX5b8ljCES8Fq9Xv8OtjzguDZz3Nl71spmCQgubtB5i4j7BBCAnB2olqfFS/82GGm2SxL+R3saIITYsM3V556r1iA2i9Nq0wtWWE0NQhjt7C9tdwxgYxUcvf6EoMF7dLg0uR/EV0fsMGNR4BKAXJypZd93Xqw3k0EvDQk/c8XIv+tB98cpVH8H/1NbWMvSxtuc0QCx4KQ7AqzFSQKSsxbMRkTa0yogSeezg2GuO1Tzbpzj8gIcRQ8IZLkWFUJHCwj2fXAstIdBWPdq95IEJM7VYelo8UutBJ/fJADJFkFgsj7BeacC+yQ4bHcg9t4Tx/1tT7afCQgYXrwE+WMEmfbzhnzEOWD/hcLAzGvgHLdujA4JQOJIGxYQNJs5zPsgZP39onf9GYrRkkbCsI9w78jCU8aONr55IjssuQhYbvgLODLjkjECEWwbIFjE7b16AU4Y8U9hw6dZsQpuDiiBLUSGDGn0DJ7D5DoA7HksNtxCWTD1Gnw4cViaMGQDu219xFi59wM1sRiQGvtRNW/f0G/zIX7/uOzU+e+S6nh8txAKam+ax3OHHnB8sXMk3dbm/KoRrkNwrA2egLAecFwxRwL4Ene0l3sddpdjHqlW1ZZ7ELDbLXtghJ47EDz9qinLwYDmW0DXOS0jshne+gUkAcn1cRDW2q3e/OoO9pJ3jnjWBGkrmHSb7fEglt3WxqVVExJOs/2meIpoa+Q9ASEUDgD2x86UYo/OPAggTJ5WV3Su5KnxQKscVH/ZSwcc9RhSma2vby4ZrMkMJqUWCWkG9IY0XezFmTky8ZrzaCrqs2x/rzA0mdSLGDbysOYTAl1IgcJgetpiySuvdFuEo41E/qkBDmMkYmRYt2nXP7SQVmQurgBMpxmodAQoBHAdkxFGOndAu9NIUYdahcLgBM4oPcGYOKM4w3HCCIa2kBGK0JkYIW5EcRb0roCM+qHddzVzIbLnALFnQL7aQc9DXWryvPbxJHoOVKNkQGwqfbOLQL4n4+1aVapFCJuR5yPSSGU4e/hWGayCmjMQkt4KkZW4rev68MTvlOpjrTai+sxULCWQdvjyycjxuA8Sx5Xv/c+cF9UjQqwHxF51NKnmlBVF1RgtwLD6BYT3BGSpE2Cvp6+vCT8DctonrwKZCFrS6xqEwhyspqyJQ01Q6OXVItyMgxgWDI+yrEpRb7W3p8UytDg27Wph8Wir+XQcSRc4Y1U0pa1kqQ7ID/BRO8+63KoCQmTVMgdoUc/72kPUNgKgRVViAflXiSC8Aq2qTot4HSeLV5PfFZB27fLQtz7bHgeDb6XReSoKT815D4LmURWQjBNYOp23OhyfwdBS7rOt+uBr5iBs9APLW8cO/wLSG0POyyDgW43a7JYe6fru6TQfKUBwznlwovXNLpqhEOG8oQVIFIecq0HkzAaXJQ/j6JGz+TO0SiPmDfujIJg8i5d2y0EbCMdfm53lCSYA+XYEEKacM3y92ekpjQ01mB1nddvWTxeGpiUxtOFNuP5aC/sp1hSp5h8B5Mhxv+8/A2G5XLhyDwHTDeXjLVfXZBWQnl89ud6N1hTazHe5+csvWNMrIAx5gBu37bNPh9vVeV9zQIf7X51XvUuDh8CU4eL48xbHQnfSd9Q9gGdASFQK/j1g/qlIY6BJt6e/zbUgcrnli7XeatW5ZR3ZLAg6vXu0xdd9A8L6ypf7uI2h34WF1iA4Dly49BYK5XUl2tE/lap31H9khSnpzf03DCr0tnmlWuz5FYka0uJen4RBplb1vm03Yv8AIISoOwykDAMgceTT6zA0BA7f7n4VkG+DCTDWsY6FhglZ6LxDAJI9AjKDO8+Xytj9BdHde3D0HUHQIytGbw84mi9BTANEZLaUwaWvgj6Kaf3Ec2t0dg4k9tGACQv+CBBuyIAj5labckgZegUgcD7iCbJ9dO+L/CD3fr2JJeXnw8PHGNgb457+ehTVP2+i/zFAih3r/csbD/MgHu1ZXu0wse5JKGhqqK1B3CCCPQmjM5CfAce5XwIyB1y4wIkBU3v9G4YC7htE8pEHxuF9cCJMdF/ENrbNwvRUqUEY4mUQprb6i4YojvURQU9kPxmznKmAXNoXogVRy5garqCgFGAAX1xPXgyrgJQ6mnDo12GjoTgAAg/sg9ebWN8lDMa95eXYxhetuyA3NbspsxFV20moALBXCLDaAtAi4AvKkC+F7WMwKTicl6HaDgzOB0SwqUCv1KnB1wfa7/sBwggHgbvVg4uVE7S4rOXYkd+kGAog8O6lKiAxOxiDaxksHLN0n5qeADGCMCsAkd1uPhe/SxafCl75m0C49ECnXxQsIGGYPTs4uNiqAgKGmeE8jNmnIqcGUYOMiI8TmC32xM9kmZEOd2e7ZdhJaOv2gWM/wBDxusrLZxog4Y5DNB6B2JpTP54Ar9cgPzKzYpfn4ixbAqu1HWlBObuoDEIeFT+la+2emorXRn+Z0yoOFP8kbOoYD0Z4LINUtTKrhGzYbQIh7TbWgkeaTqqqfTFe5b0AISKOO5vWDmz0guDrDvPuayjght8BYl8GZ6D5hk3MdyiMw3oEccszwnrDGGAcvsfVsAZIk/9c1iCR6vIPEhAZudSaQMwwA4S7VUAQap0EF1USMcJ2XGgPNkw/YaYCQph1MIaUXgJCWPGE9TkQMQQddsaeAOH1t4XfOzevnHAXpN6VYhs6aRMRiTQxTLuNGFM0C5XO5j19Me6JgRmZ2IYVMNa7w8EwJivz9HAaHPeBJkmM8SRh1AhkkaAJDE1tEkPubL8BR8KsgCtSp1RnUgBq4yKDCZETI0hofdoyow7snQCJq02sq9YpSFjjRXCcdbfBmwVHdPezCkixD+hxgTFYYxoybhQMY8BIww1wMwQm3NvEffxpEV86BCCrs0Bzs1phO2arS/KI3MRwPVgELqzgKH3y4djQC0y1tgBj+juQKNIvnzTOC+iGc+D43E6w34Fj0xBCUnB8bO63C6Ui+CmCjklQHY/vEulvLr+h1RKwMx7CzLjF7BzBSKPd4g3hOEBjg3vaklFLzQsWBcjbhmY9n3HfDIZIXwSn02fxW4TnzA5HClO71yDGVI/12QMgc481u9XhjWBvC6xpzuyyTAJ9LvXNoutcjM5NWIzoWQHHYjPHt/yp0zF/Mu51RYGgJ+ZydBbg3QfHoRVz7YT3aWLlBzPl8koPQ3Z46zw5p0O/YfL8wNseQc5wd98z3qWZeVccQH87GENnESezpauYfhumduvV0rj+CJhzggjRrv7Cqc1/jtuuMDiE8/SJPns+uhLGYsPRbSm7r3bSz/QbX++sXRuMUOhKFjI2/xfo/LNXPsXSV9gb71xVlbXIimS/q61pcBEcSwZRR+Wvz5yBtPYmffbTNhhd9NxPWoYYhtxXt0q9BvleQFI83MRx3x2CqwgM2UxKL0fzHaPx8SdAeNizqNUgzi2YD4GB88XD1kMcdsr5rFtgtUwm2nAzpGDFjt7xoGwkjToYZvxRwFlCRwG6lILHG+CszwSffwr9/RIQsoTyfhPSlibhVc9x3smxYrht2zf0+dqKbiPSXUUjlrvR4wShMYOeMt4JkIWjueyc55RAPd4+27rcN2/rJoVNy9N307t/rFpmD5eBK/HfoP8cbcUnV5FrcV1WvbML0TVgclv+o+d9ts2J2x0EVxQB3xYI6TmnN0MMqSFn39GJ2oBcy85lD3paZJFbUWQ+DRx7XEtoOfJmcye3Ilt0FEx6Nyy30E1afNQyA9vyNsbaSjO4TYIRSk8QMSw1Ooe+GYGJFVe5PhHd9y6g091pNnfmgOLQshPo7ZDrgA24Z4AFQzgVMKIy6sNswrraMDhbAebNYOh1t8CxAUJbexAIGVIgkVlwl0OpkwPNn+FISmYyZcy0p8BxdgnSXE7MQVjPMPAEyOmzt/2KBwTzOhDpTOMk0AuG9jWj/+QJRnEbvauzYtXMpu3ZX/eFfm+++32RN8fdv/AjqJat/SjV7UtvBe2qcqw0ouryVXfm/bEl2KKRhPR+soneYK69CYxjscvlsjoCumDAWJnaZMPw9etQQwgcexaFYd6iAWKPgiNtcLhcruFpLTfD0KO6IEhjCUFrZ2aCIfOIE/cIOLbs4AQwCYjwHh6Jq4DI8VpnRXDYS4DOlUbQrIBEe22ojJhTm4vnnab9EaL5WGl7bdoXuSPtBieCNgajJq+aWSSRTIKIr7phEUEGn7VVlUlhTEuung4yLPaqjte+YdVPJ/Ig0XAPEuqeP019uq0fXWGKYcbl9wE5dxjEEbWMTERGdJhWaxCRHjavJE97zEkg6E+BixqEkA48AZITgLgHZp4KaBW59OYde8pGaNwH0fF4Zwibj08lI1Cwba0868wnwLJlxxEWgChYE4AkBSCTgM7+BEjcBA5n7AkdePMg9v7u7lWv2xqHrDdHMmn7twd1vPTfAfurGVn/qh6o1i+YnOv4ilrzOOqVyA8A4tYAsRWjHTOIdOdADCOBFBhIWrEUksFDu9iuWQjOSRBhvpMxzBsicOVAUOLnIKHo2QPPZL2ziX2z6tLo2MZmGabAGjiaV6BwtQ/iOAEjp80bRqYZHBkLx4UAxFUC2lxpDBhywIQ+CsW57tKBSX/hf348yEcWBt9yrg7Ez3sPYli/PSxNY9ms4KARKHcuHu9FcDo8P5XfQk7PZ8xT8ha3LkPhzNhxnWlPLfgSTyht7EyKlaPiPhBh1LCU+hzDjjmkLVhV/kU+8Z0l9M9PfwtM4+4CyPvnp8rtIRxtSJ3cHQRhp6tbwWJDKbjdaVEwVwQXvrLQxQcw0G0rrZmbQRgdLIOjfAOqA1IfQ/huwmDy2GyNrj2jZwowzS6A97jsczrQnstlG8VOFovdbbLXPTsiH/rryzfNjY3WdWC60XkUjE3g7kQmHHrttiSW3KTZvKabe8WuGMVyn83jA/KjIFzbnixA4O5JiHx00StYynsImHc6M6kYx/o+CHcFIHwXQsp1fGlLhkFIGHwgOQ/RBxhR+JGFgdVnLv35wmoarQyo7Ah3q9pDu9aSUhOqHoncQxugasQfzyBPWHA3VQq/YRYSL4JJphHmHcSQDoyAvdekDd9j/qktqO1rk+jFYW1GVMYLVOO/U+peVz9RqnMla9YO8fdih70gWI3thESBqm1ELamlE2E9JA7wYuhTzcTMUi0hNwnGqnlqjURqgqqfELRwGc1D7aPgCO6BvQsg+M651ivXSfy+NcdIxZtH29cOFiPNIFBvXv3G3plwpXJDcfyfk3iUQfZ9K/sigiJVRAQEFVfccK0bRX3ufWr1+5+SzAhI7Xpsa1vyzmPyktzMDS8/bmaSm3zGQFodnPz6D9L7B4p0l35f6J1S788IHDhFD1MV7Ts88rfNgxAYgyMjMx1rKFtWVZGWU9rWFK0YC7rVIqsvNS2k2897+TdWlYZTIVEweKaSYZKYKF/IhPj1vW2vRayFl5B+Va9nOv72QEBkO/L7bfs7pf/s5k1t53WCQghEkfub1mIlhsxarelQdjRX1le2bK1iYV/TOx2OaUJjNtt3gZQlZtM4XejwFyibO32b63qbLrAKwh61No2L53zxPoCCbGidyZPuecW2dSVUMbfis1s9AvcZetPmHzzEIs3w5+RAfndJdLLWHot0RHns/Uo7yft7ANmxUPXM6sBL2zC2/3b7zLcZILiwV0OsvoCZaG6EqhP9Cx3mxW/o3MJkq6bCUn8GtZgPz3Y12K6OL7vFqjcMV3QB9Jes61tP+S71KMb3eovbPzYoffPdjDkG8isG4w96UHU/zHatk3i3ENqTdH8rIJMgFP7BOjByaT31A8sHC42XFdBtNyjCJRVuitZxIzDhD74Mv/oHXA+mBPF4MYFfGrYOQCZGQbpOgdScQHi327Yxs27Ul0ChewbDWK5zgwuCmanR0a942AZFugbjtZQ/DrIbafU4hdSF9eoAWEi7Gi8uIG2+WJrtWZAPY4NV77aeCmj7PXXOBoPyWcCu1zIiCrpyt3UdBkErue1xBXTUBd/N3dZNilfml2RpOedADYKDaRCoeAb6/ARs4eQ69QEDhA8BhBKK0VvMJO9dV94CGvbN5/OBa+gvwLBhw5Fn9TpwDCR0842jV0AqDjAx5ErugxGK2X43ugDpNKEhe9noKYPhdB2UwlICgXkJEpZMchFl3xhJY3nIf8GjHgx3XgQ1lUpibs5cqawV+gIvrop9DuuBzeepgSpqcaejt4vJB86kD+n0Ok+t5cYk3jIRKvMA5o1AyQB9404l9Zv1zuwYlJddonS7EipfRGWRHwwGq+eYIOSdBW09pIeHarxjVMBw/d0dGMZHEdJriqPeBdBPAQjhFsCKjWMwWMcxlaQE90U8xSSQ5AnMK0DGk8HhYLp95rWJz4CCfz1fRFtnBl2gv2BBCOPeJCPRETA0HKCMA8JQyYHiyg6QtjaHZtljTV6whr7+MVCos+dgOL8FgzOBhoYQXM4D+sUeHh+61MQN3AzxrmuUQEjn1ISa0cAKKJiaipSQ1FppBylQBlxD1ddsGYjWVWVUIhQRLQNS8SOovWUwXlTeukZjVRFsawnB7uA9KKxr2LASkGnpk1gQDsi6HnrT+f1GvIL7e0gY1oMll1C1s3D/VePx9vsqEhbRKhl7c0IGxBiPCEAKvwgIAcVdIAx3NAj5aBUqA5LRTk7lLKLo9MKynwjD9AhGGTYmOSBaFAIZMMwFDqCC3tZUr38TFw1IXBdYn9E7I/cjFyumQaHdx8OoTXsvIbRfv9RPLoPizKC1lpIRGNdtJlsEqOtN5mIBllPZS9C7DAbnBtiaSaN7gDTlBqq3amDvBGzDrJmcbtY1smvLLAdUYNBvNAGp49ig8MfMVecDMOI5g6QbNqlRiC7Dcav0tU8BCCUUzhdYHfna/l4d9xtgSOjBu2nuEuns+PP+fmkaa5ugra3uDcdg/Eq9i2CgKA+mf2mIRVFNngF99jIYjm8VQChB33bCXStyLkoBjYPxSHFMaCMAudFiWssbUdAWQGGdb6p3OIuLMW6FLcDoXs9/8CMB8aYAX/wOC9sz7ugefFHnUfnF60Mo8KjOOIYWYFytq8YClCUXQ/4lCY57GRD7LKCyH2ItMKve9pzBdAhcfRcBiZVwbstMGyzwaa2JJ7aSZEAmuiAAuXUor3nvtNhxgIoNqzVG8w2uYxJOBrd45Z/FglCsfLOM3I4AAOuvgBxo3ZoFzMUOREsUQBS7uD9QgFiXXnHKTjAa/AIgBBHNGSiBKQ8G26ECiDJYNXUuXaa4yHFAxCGQeE42AfGBKoDMj8vqXXJA1rgFWey95v1Qf5Cvs19tegoChsccQvZtEFXgBkcaECwPLoBnFaIpBE7Q8ZAuefPlrVGbiiarYDi+wngFQcvFMfx2nxTzA+54ingTYHANOp1ObwkwestobYfpqCEVCwKPRUzN4/IYuxyXw6xm2IhPYUGKMBZKg7tAZHAF9KDALYiKA0Lh0BsowaZJDbWfcUAYpERa/lpMuiBBYRqp+KMKtDQYAX0HEH51JetQG43Y04ZQis6BKIBQBt+xiYF0aOMarEMKYjHrQ1DTBCTZBuSBD+LO5nDxCojlsrdFw0d6FGY1Tv2wBIyM5yzZe/i0aVBqPsGYBRQFjwvs7nLS6UmjaneustaMrmRPOg3jPox43WDIa7CQRKk4m0TeivSg1WCwDpVJExQVIp7ryMPw6DLUAhAiTx73P+YP+/eB6xisJT6uth6CEqhLsWTwM1iQxJBJkzSvcl33ojZdrIxbBRCGre/yoDA67E5tkcqAlL/NCPIxN++x6ewl4MAZc2q0SyD4BUCcA7qk2X4K8mJ32rdAoQDis+hsuRmQN28W815n7BxSLmY1rFlICxCetd9UL+nH8esQq+o1j/Um1T/YYYpiJHn/kJm/agISBKHmLfHYCMkewYa2VH+IZkB822ZrSLYB8hCLcjnPCBhKGqi0Z1cJaMuVMUx4I/XlZT8zajk81SQDxboTIcWCiJMSAseO01EnRVhzZw7DZ/6iPVMO17c1QMk/DAhByJ1KhZlsL+eqZR+BTw0CdQEELCj/UBxUUxKg7gPF82jrFUU44uL5oJlIWsUT8B4gIAV3JpXKhNGspxySRQtGfj2YKPxsmSNmIhMSL+pXUzXoNAWRP7lUdcJH0NdSb+6srwfIBz6DZMAoRcIJBg4Id+gg5iWsakBQHqwTjwuYyKZEB0gugr5akLqQM0avwXDpACpjTj/up5wr6AuUQcCdEDkgEQHImI2/9H+VJpolUKgDK4DDwEm8GLUyxZFkd/6fB6RjqgLk3TlOgo5kitttofRrateu910z6e96oIP8xsz5a1HaldVVtsfGxwIy3Z8WFuQo7p+pDVzCF+BuHMkt+Owb6rP5bxeQbISWDf0pWvLPVaMurOdBOSDxZfnhsOad8K3Gy8DRkINgZUBnBM6j9b76V4QCwoJ4ZicmtgcPoc7WMTYunjZvAirCGC4cwPCPe2BY+nEXlGxF5ma2stf/PCAyBO196bt3T2ivTYaIyU72iiClRBHrsgPlzmn1rg3s0VF7N5KtylpadajRrV5vl4aPBcQ3H5Znxqc0pvGtGtR67hhlqfJBtGn0bqqOBZ3JUN1I4VKj0x1BlS0JQFS5A2VbjkOzSe8CRTBQApF0u6CgYzGtZh1GfRAUswGT2axbJDA6/YiNC+l1mZO6U42JWAoUM5onUCSaYrotkH/8GeQPh9+1Ki283/t5/5cG8u7qddrxg6akYCEmdRUDYyA/mygsdG9OKmhKecMCK6pUqEi0omzaKEr+ywAhvYMA/6OhY+OLrtH2qxdU6yoKMCwNg5KWXGvTmbZLYtsPqIMjJQWuHYjkNlFoQ6LUQD/BPMib0PMU/z+Htgtt16LDdkrntQURUSRb6W0r1FVWEcfbYT26/7wp+l8EpOfQ9D8Iv+Sz9LE+rP9uQGTflT+Zr1jj7i+77Y/7J77izk0c/4T6RJFs1/3b4p+wG/xtgfzl0v8CQFq+/H9jgxSL/Ec0FBKKnkS5vteIz9tje+PS98LnB+TXeizB08SvW5AH/69YkPoKCFHiE9WWBZEW2O/7/Td+NYJ0bf7b7X74a12Q4Pqs24LM9sl1qZak37YgT/7ftCCqr75er/804a8AhGJJP1m8X0Z7ryT6uicJg1U+wEPJEDngn0TJ142DymXlLB4UYRVeiiIm4jujijyBP17AyVW7h8upIrt1d1G5u38EIgOr20KD+vzouASCatGwT1uoyF6/zUZUDtVAJkHRUt+WAJVVe1XR9AQmtqGwh8HE/Vp3VFon69FqPRXaKRW0C7zq6OufaG2G065DXDtleAzUqNymZ0pew6cDRPyvvhmEMOzGThYvB7dBf+YYTqFfA31nDryVbxjuzO/KnMq9plGMW14d0XDmncPTTmfRTrmO1+wj3qAQMl5+kwOlmM3uu5xF4Eu2VNXegnQ24jF5spiwFwmePKq2BqP7oECnH7SzKhPt04SV9LbDaNcHhT4B9rO5/beGzOf1oy3U0Sb8fMpzYby3tfCb8PkA6egPbQtyXgFDIgCVGqlZQpBePeoTPk6lI1jGoU4TgPG1WDhYPRoBQlurbp4fXj3iXYiKskt5LhpS0XKZgcdO8mzDId/JuJVXibXDvq+lIHAW7QOlUoFnSXMAe8rzTqamquUwkFn8YuRi9b1yMDoi9N1sJBzCleQRMAZWYNoHgtEMGE7Em3oB4ykowvFlVJPi/ly9rxitgYQi+QcVx61UqkvQReBK8S9SO728Vxf91l0qTfM6JkrbMyDEB9+CGnLr10Bn81sZIhhg9dWvfQBVY9o1LRSb2HMJQMT5YSPLDEgt3oWAQkqSvyNC6vkvKoD5EHaJtaAE/sWv/t4ifjl8OkDAf8f2H95akPNJSLjO4ua+pp1XYc1e0cdmgSePZT6XTKCaJEAhdgbsRB3ONaQ1+sn4F+DaU5zPxfY5IJi26jc9CWDstqI36aaBdNJ66rBtQnRAje500jkPTCQtlmwE/ugctubnkilQnG7AZ9BV4sPA5uqk5gjP9orZ1gfce68s83YZkAIOJ0FhtFehgmM8lPWDwZkHw/M6qGIGc6CYy5ZRjTEh9MVTdOQCeyDHugu+UvlIm3NoZjF6b7HEThn6NJXipv0RFHnvfNEeAUqaK709jbn5baetjmve+tgwLk2bo3pJOMTUNJtWbRgjlh2rJVoDxYbntJiTAVnezGssc1i0V0zmadzZNieL8SUQeqq9cupmMHG6qCkmPF7zJsaat3EWeoDI4bMBQiiOvvn+B27q24BM8b5V1OPhmx0VQz2bEUcVssAeEPn+GQ8BDojdj5X+NCiFfhhYjTFmzwPV7/MCENZHUPUaMTXoB3U2AP0x4B64FF3VkQPC8Yrwf0JNg7MmIF+tsI4D4ewsGlfAbDYFvbdOkAq4AcMuvmSngc2B18UKi0VQxWisb7o9alA4piDhsAEVAeGNMBwsly8vgIgABJJ3Ebj+YRV0jkLtcUF7BCpRWE19CGaX4POcAyNZFzLZZWA7qYJaEkfBqAPWEaK0/ofVmXgfqKScg6UCnAmEB9cZruNhLPRngKmhNFewPHQbohiJpQHLLarfuIBnrxGHWgnIXeFg8MpH6dWppFZ7DkCl3jhLCZ8OEBDrUHbAo0YHIGOe9YpZ58YXe4jbk3kwqD1naa8PRBVL4ClGgJnABO4rYBThaCSTdn2TPvOqQaTAPuQn3ULqwRvESwUMa3r02WfBoD8VXTWwAgZHEenocjpz/U3Q7ZnDyShKZoJ9Hag2H5zI9C/COQaGmi5cnn6J4fYKKtzEg5C7vwKIGwwbObc4gPp0N2SwmGKTuhtQ3ohBnSmWnFUAoeL4JBjth6AIpTPJLeyal1Ug0O2B8YFjX6AOFfQNDBtACQ3cgLDU9GYFIfsdGMp23vpADbYrd+vRS5UJFxsI2v2AMbbCHdFYk5IzfrtZ4SpxaGpqP2XHjZkQqD0r/BFNhbpHlcqmwXB/CYqiJd0bYL2GTwnIN9nBaOgNIMnhvQgj2BoFZTh9AQVNVmdjDBTW8SYgFCg0AZncAKU4G9RZrVbnjLz03zksnu3Tkwa92R5ueWKNiL58nxPHGUUPOHd6LAw6m5KjhVRUAOKzL8C2D7XX3Ey1PcF5BxU2BkatVt0lvxfDgYcDAigWZNrLK3o8DjYBo3Cco+7euXLX50CUIRaJeFyoyoAsaSgodM36161668A12FrStAU4mzEUxzGXdIPich4NLghdDXmrXh+/hVqbAsNTUrR+DeGKvXgm81Fz6g39YxjR9gGh5Ao2L0AR9vj57ZZNIAzjQvtj3Fk5tE0qNUdgGMmGU1pe3e0xGNS3AcNybyWCHD4fIBRLQ998W+seYhEQKgChuOK/3SrvcjkgEQbnGh5ilMEd9WP+HowhE5tRtmlQEQYbBwTUPBVCxtsEZEd2dg9HM1DhWADi805AhYYFs0nOJcEZB8QAbG7MeKeh0gpXaALrDYdViFDkdqHCxFtAiHYJEibHSZSbJ90iGPKN1jPIPBiFYf0VkGstIwymGi6t0xRNSQrVUf8JdBHZgswJF9H5C0zpuaBmqxxfkDgtai23BZEYb704Dnuu4Q2LsanXLyH32ARELSyIbOXcMiALJv6ZmJS1/2ImFJK3Cs0hJBxkfRmB6+0lGDcta3F/z4Yo4ZMBAkJQ3ltAhxwVZypSjo6BA7IVVQMPWaMvXgVSQ/tYyc4Bq0NpHNoZCIimBgqCmXgEyAzlOSDheAZIxGdwP8YBsYBohkEk74V4BrHtgNDkPFSBVVBQnNnnsKUHqoadHBgcp/IQ33ANBld2ROC3l6QE4wNhBZBVBwjlwGEm6oJhCvB7uI1aHQNT3mJdgcLoraGqZSBcJRdw8M0izHtAfegJDBSVYzg5IJNrUHuGgZDnBCvxIDDbrx52gqi0F1CbR0BRkFsvdlVhfJ9hinsH4IvuYETDAdG68DVqBA6H0uIh3SYGWnHZpzUyVAZO+guYcsoOdn4Tb/i63FICc76335ccPhsgnVMP7SkEC4hwNDOBEuDU9Lzh3Qb2o2vj89EEJNtoft2S9UMyOPONBKr9x4f3FwTD0cS4IzosZPS2w0uL1o1KAyrsOIGn7NRwJclnAylcnsfaqdYBLA3cH16sY2KwgG0TKHV+x3trylvc25j0gXtmEtxG1/YnjyBZR/fWDV63AsjeKM+b1lztxa6As8DLsGeDp6iU6XCGRvx8/VHrVOM6rhJYJrxN9Tw1jHtq547YFh6P9+4Dy0hyDK3nzboMu8/mIiVoaGtj9lqTkZfhnOkYviZ5hMqt99Qky86+xWrkKdX+jcS8Zgr8HQFCfLOwom2vofdMcHpcAXHThmd8f3IRN57JxnF/HlDrLIcXgTpmvZQbloGxVV9l93nePN2zICJ8OkBac7ukI2V2RSbmQExXE2xdjPl5ypf1HXd5AvCtXQ77bvoAaT93sQIcvOTOH0Bwtz7mnpWnyXzD64uhiBrXK6BY+CpOPJ+aTbnkCsuN3YWRCAgmbnMbERT2JZxtgyKSUIk5lLH5xhFFKSNKL1WO19yAOrG+6HtQgwBcUN6GJrh7WWJc0/v7JV62c7OU843z8yMJcO8pM+lL62MjTfXo0ct4oZ5C/Xx3LA2sukHx1QWjq2/4eFvc//pyow6K+tTubNAF1aEapN36k93GnlqucKUxdZCqQ32oAthekH8f63u+pzlwzRZBhFRlcy2NLUPf2k6dp6ueL4fDQCEvati6z+N6d3d4pvcMooRPB8ivh/cWPHVHOi/dcSWQjvIdsu8cl9vlEP/Osqv3VfvVEu+XbWe/V4AHvCcOvH+/X04BxZ0weKS7CCG9VYtvw78BEHkleuuqmBiiXCnB2wh9c2kfdM5EnFK0PiiRK+RxJscpD22/tNaaL8pjb/7RqpG0VFQyX1XsQoOylqAo0VaPsvYVELlCic7KRA7jWsryLXGe2tlGkSPu0qljh4I84MQG1qpcKa7UwCv8rOuN//3h7/EHIaR97Y60ly/hN0/g6o4LWt6/YbfTxvu1dxqlD/Dpav+y/ylxUeZ9A+xqvGb1jMVvhX8hIL3QC//S0APk3xB6zxi/O/QA+Z+G3n/LT+xdiV8aRxT+pjP+yC7hBrm0gBzSgCIU8EBFFM94H2i9Um9NrbGNaDSaRKNJWm3aP7nMgoLU2jaNrU19P4XZOd7bWebj7WPnm/lz8t8ASP52mXxcbn6e1Z1Pf1zJm//wr/bi7OsN8AyafSn6zeuDnEkRSf7/Q3c/l9sPkNwHcfs+kOLBlac1fbjGbPtiI39B7WUOFMj1MMhWvV7dn+gVuYv1/3mAfPggKfYRne5rPMhMIu9BurpvwIMUm//oBuApNEAy0t0SgrA0FQf5qB3xuIo8SFOncIeKfx8gFE/MDhBCYE328PdLjxrI+Tukg98Sxwnjky7yXOsLDYSck8Iv+O0DoJeJ37maOWNFxgkEOUi+plRiZ7niq83n7PL/jBTTyCl6AiyrEhdK5IwgOAdKLtcFzrtu6gLFhVWK0apaHwxGw2pDV7YVQ32uZ3n72TNiFCspUJCCJ0vFD2GbZ0DkAiBUzIOR/IMfhoSs5Df9vl1O/tbJR5msWLQQNUPw+3XwvOS346CXH4H//h3JxefMKqyglwuziYzkSOFSFoUhDHqJtE2vZKXnH0gP8caSugvt685sxmXzBctZ5hVeRSN3hDmYLhX11wAzLXmtv5kioFgCLei4vdIBeCoEkOCj876ObORSBYM/l059d5n1njOcv7j+bqC+FRD0E5fsUkRM9vMD9jgGcvcD2c0D5GJkFXLSgwZdNSgimoAPDPO+ziYQxDb8XQIIEr6nPSLKotx2hKBNZB4HEB2edEvE8b4hrQQQApqY9EVA0ERLnrRSXhj1TVLNcDY2Lxt+ypqDYJjg6iGWkG6PFlpPB5MG3UhfLyWQu6i1Vw4C9p2/M0IxuACRxlC2Kod81fewDShTRgUGtsar581LFkJPh0Mg0JYg0UOReLjauuaE2DOcqgZoHGVrvJRoweQuucgIXE+kM3Er5wXKRO5Kpvq+o4TXrV6bIJyjPulLAES5lIOp1T+jBTKckxD16ydqIDIQOBt9PURqX9Lpc4DQOHGuOQjh/U/5uiEIIHBPjteAItbp74pL/eXDPS4HqJMJDC69lTFBES3h55jFAV0LP3LYSmBf8z8sAULKMpHCvuRvuVtk6GYBwgdCpAnk0qomo0mOjLlwQxhotC0HTGUQkpr6KjPgVzxuV4XQ3wCGIT3FZt+s3ocp27Sh3AGMlq831FZygFBYddOLsi6Q5Lo6WWUQCKYezE6bbZOS1/imrmHRXOEHOm2LGlsUPZqtZotqzWBWaERgwqvuV6wQPDXPGkpNCbCkZVNtxvB9rzLYZkgZNVEMqMYCSrHJcs+oCEFt7LcNguTNE4LGysFB2wgwNB1WrCCo8zXcT0bQqOs3V4YQ18wFkpX14LymJaWx1DYNhI1zGq/cXnrfWFXtWwaiVZmTaCewS3W3gEe6wWXZFFgOINis6ldYWKv5QfPYiMWW7INuBliqMycbMDAHTFTVrshaIFfPaZK2ZVA01jXUPsbsOGA1tSdlT9CtaFjXPQSl6LIAoqkBcHi1zUNovq+r6oHusSZpWsz5xeaqObO6qg31qrFSveA2ZvodxaZlzKIT7xBysx4k4b1fvgZ60ZAjY0kHCMqoOYxqbw2w0g6q5Xs+zsPmAaU0S6Ud0lH03+sB5FUJYEyDiGwCePrlI0gBg0DgLwVKdSLktinIK2eAnq8fclNCRSfQ+uUwnN4oMG1Gx5dDQO39ELR8UHN+h1g1haefJ4AVAxLlIgglMIyCxR+YtdwxUEDfiQ5TtQhfM1BS2YsENz8umYezvBvw2Jqw+qWfoEY2DwQ4CZ0R1I7B/mARUvUOPZiLuU1dIFpKYHyKVlNUQHARUG8CgqIFrvIVwCFzQBAJUkZQCSAUHr0Azg8LVcaADSMAxQZcNmnAj20C6qfAkk1LbUmCqKwb1Q96eVHDMJjxGyClwOIgKJWw5qwqw3cKnRspCzRTqKnoppR5zfzEuyVjjV4BaCi3w0UB5Qh6KtwClS5C1dAdleQm+SAEhq8ffF4lgBR4kHpi68CMBZowOpWOnvn6cgribrXaetCv94ig2DwHyPQsGNZMrVaH/z5SpWAIyTqy9zjCvCNoBEpTYJwx21OhBRFNKVCKhKkEhCnDaKmK9MwPPIC1SiScu07R7oPbFOJkWw38GlDOFBFUDfMUFLVhIFbZKuGvpNVh9CFS0QYE5iY886Y5+ALn5ikeqvirohNDXu6STHLAEASDKzFhnuYEdG5/SSL+EdTymAv21nlLECGTGwguI25yQEBYA7nXCkL0QyDChMOvJyQHkH51yBNSl2YAEgemOED0G+j1Ctxu/SaclUOt3d993g1vLyiMLejkHEOK9uEM3j3drSNfxq3lk9x3S+zJEQz6DSP8HDUbaKpwAEy5mm1Iz1ekmMoAhGT6rRtHa4VdYi8/itxxrW4WIKCW+w9kdfZLANnC7CIMKQ4Q/z2DWq1ZJ3FzoFkj6wbzK/UzyANk1g8BLfd5pVkMmEHhsmXvcbpUhlpvgMCyBgbzKIbOSeGUwlMlgEITxLCkfhk9xuw2nRSDPkzYYmDoVKBvBQwjRiC+WKGJAM1BwKm0c/DNWZoN91KImJoAnTKjJDCF+gvzFH0S6Us9gCkOMhpYdrSYHCA+laG5bhNtSjfAFGscIBRPdZSALaiam2U+hExOcA8StTm5cSXkyrLsxn1LFnWt0nIBkPZKbtWPaGXsHCBTHM0gFPVbmL8XUKvVhihRToDwcR5WS2yxBh889zWZoqQbT0orFkQQUCwMwhvyzaKimwOEr4gBQeHg12tEMlY6DIZum5z183534lEFp+Os84ORO4DcLCe976svvloBKQTIJqyKhD7GATKuBskImttFMJMVFGxGtob1WYho1FPM+iBgRgXkVktk0u7BlCBat8ak8WJ5wj3IKNaqGKHQPc3y7bSc3x7EpAZE4qSqOEC4B1nxIfqgDCL8FoQHcwAhcC3YYjD0cYDIQdGnb2LQ+JGoaCKw8DFyyTyFTwXGoBrmAOEGTSvT3cBQZYjh8SCalDGAKSWAIFE3DwHDSjeDIYiJCifhACl7EIKIYZXESSdEsWqvG2LoUuAcINNj3CpBNO9BpjBURQnjHkTaCJyAQFREJYBwVZRJAOlQiufzkyf0y8j+3LymR8KyWqXlAIlVOEAERYg3zAJEHYYITzkN69oYSsfR7bVTLKhKGFR/y4MQcvHzZEGy4K04u1CQ32PvQtEtI359jBiEpsxh+SVOev0YqMG7BT4gJ2Td0kXwbgBDX7SCgUCzwLnVBAad9IXPEHvwBJQwWGVuYOTLVlCKJ5UMUFuAAAeIOQg3Z3VHvpRiEHl5FxD6fBhRWQcIYfBYsjuhU0wPgxiDfEj60TcNhikVqNTEyqMHOBUcIObHQOj+JEKVTmDUSEDOzbdw8wQTsgikmGhGzQ+bN6RxNhoA7LYttCk4QPSr6DCCabpAKWZX+MJdPpRVRoHwOmBZAIUuzDnp3IN4EnUiUKsDUWQB0lXeJFmtMcWBDRXAg3SnTAo0FsZAjLw9haDnAFFNIXFvXrIzDrFikhcRRij3k9ISW5rmAQgGwzRgmIHd1g0i6DhALFOSFr8CBMt1tHYTcNzvhIO7LfUCEPnigz0IH9j5RYOv3jOV5xexy4rKLqVu3Uqq1wDkgx+aMzxeBFKfPQKMA4D/wWZYM46FyuB0UtmD2fawWRHFRHl7OBkwSgvmMIJG2eOwIQyse4PLZluPdEevVIeTag2F4hswBMaAyfL6uaS0bhZFS/nYWNLbB/hkW2G1D2tVYBhQ8aEfBlorBsOqWpHfsgnorEC1ZjNoqRXwUDbWUi2tEtclm5sz64bBdIGBeUGlC8+V1gCPL8wT+CoGxjLG0GKUomblYvtABK110wNmyzqayt0Ay6C0x4blL8Oj9SmsyrbGzMY+EItloWy0AYh4Z8MWgwg556QT2xAUmnDSEGCkfAYUBFixDYyWPsH8fTfw0AvA1gI8La+vb8fWNPCorrZvtgFi5QQIvA+BAVNwaxHNfcCabLYvA/FGTbi/ooUro0h+HwFGP9sAVC1ArX7ASsodvGGnZExbWto3q/Zqu2Rjm0l9CoJeM1A9I6vfSvIY5KNN3SnCQL6G9E6uaJ97v607EH8cTjop4qR3dADxDQYstYKio38zVQY6FGzUJuJI+MOpOAjKgqO98h6C3gQIOMu8fzwEQjdGH7q6m6Qs93DQ6uom6KoGxSoneXtGx+OOLNEc1qDPPTEBiu6trVQNnEOgaF0DgScCiib/6BIlaPWAIjQDshYOzwgA7RpYFacYePuwLx6NAtW+Pie0ndOjQ0KBeW6/dcHPVUWXQOGYHfX7k6YyRPr6orEIRE5Wp1NliG3gm/G+vuBDoCPsd5dNAO7hcDzCDbf5Rr9hBGzKBUI2ahAbD/ZoOwgyzbIzCL5ZrH/YBvtDEYjOANiIgsK61b+Bbmnn1/Ci35ppbgfBDHcjT9Y319Ab4X1aeOxrRVMq7E+AcEGkkwHOcTuwFAXaJoMhSA2HuBsBgTwVXNJaBfQEfU3RGqDM1xeDJzjcFqoB+fB9oM9+OD07OxaaXr/MyM/PuaGXb7jdkjcvXSBHP2Vyz/jxizdvfiAER5mKXF67T14egeD5D7xCCfD25QlI5vjl2a1CyseYanKlWyzcUK6YyV14nMPY1bT032Ns59PZ/z/2anmrWbniKfcV5vNPwy3SI3j9KmixXlyl8YqTKO5QkZ7ik7yGHg8UJfPXu9D0lVek8CzP8/4GPuKHO3vPMuJ276X3MrJ9ArSlt2OgiG2n2/BuZyeT+8sxKE730ukY8O6XnZ10em/nl7c//3KaOdzmzXZeNeH42e4L0Ez5j5/WLdaVOiWCeY6vfWkSEy1igRcTxy9yi2twlUTKIAWFpFB9rhIuM7eldBEvvbA9T1xjnkjNeTj7xOpp14i4yJRq80SOvH5ZI6FF9HFCizqEnNULXSi4XKBS+zzhPl+U719eAXCuhREgq+7cTr5cMn653/zgwxFCMwA4+OHd2dmZ6Nw+PHrx9qf0gQslu7txUMR3d+XiYfrN87dvj2Mg9P3h651jwP78xXF6/+jFc/bzs1O07adfPn/77mDnZxxv775mBMd7bz49D3KNXLP2BiFXViLX7FRVWEhIPvX39wQlV5kn+QR72NAwmJLjr2r9kAqFPSO/X/Tv75JK8e7Zy+yH+mL7UAu0HaaP0LablgCS3tW+Te/HJXjyCm9OdnhlAmd63wWKnzIAOdk+sEs4e4+Tnf3td8g4kjefvAcplmLuxdWD/3qGw0fbrfDDg9G7eX1XAeQNuGPiAOGB1uu94zxA0uLJ3o+USJKpeard3S8Br5vet+cAcsoBRvE2fchO9t6/Tzsz9f6HHuSmv9aKsVGs9D+5Lel/QCjOdg5fvXp/eIS33IMQvHx2VuhB3j17fR7svNk7wuu9E1z2ID88+4nnvE2ntSfP3jzfefO/8SBXL18z2QV6ObSvZlLJde1iDW0g164hVNSAVd8N5BuWPED29/cPt08KAdJ04UGEEwkg/C++e6DFu72figBymgVIbDetPXr2YwYvJyf/Aw9SEPMS6T13TKAZAyP5sJkhLmsF5ZL78r9I5glMqJE5IZXlw2lcqlK4y+UjLYX1gR1Uyr776r9RoZkh/1oul9uFbAxC6Ou9d+ceJJYFCJEExzuvTk+lGL4IIC+zN1274kkGINqDVz/vvL5Vn9WNbgOdXxcud2wOgpKCX3nBHGJRhPHbTS3LbG4QFGQWVCnOcBnsgNZBc9l3UcMVcoNBuvxg+4h7EDd4XLErHvEYnPAaL9PpZ8/2dtNHoIUAOd55L4LiZPsVyQCE4Ci9n379P/AgTeFajV/g5Ou1zWAUEBobNJtNQG0Qm1FQJBaIPKg2LNjR6wKbNKgfRyUsdTxW13qAtp7YcH8nd9nO9dIFqynrQXpdnsUO2IOaZAfQ09VrUDcyEDgWA+0JwG0V/QuuTtvUN6LYS2hvfGarzwmCic3phfCo/A4mNyAUZ3vv4/aMcIC4Xa7T9H4J5Ifpn9rs8Z/Sr5h9P/2D3S5vY/bD3dPjd8evd364DJAXu7tncrvzx52XONnjruPndPrT9yAEicGZJ5VBQGOcTiUrq9G0PGm1qMHnrGvWwbBihrrd0zJXwirnMVa62tWf5bA/HevpuzeBSHlt/bh3FrB7G6zjeptbAkigwbyQQMDgqZdF0Hl/vWtEFgbmy+s94fJWfKefXUlNGB6Ya+015YzqSpcn1VUliFaOz8/KutituuifivCnFruHB4cHu3H3Dk+k905BcLq3vXuwu73zDvhpb3v/4GDn6OjZKwE0A4IDEXDu7MpzAKFShfR2+jmOn/0IAvvB9ifvQcjF3iAIJEGg8oGBoKYyhuYFfOd1QW6zolKabyXqoyj1gZJ8u4APE/efAJE6J3wqUPjuxXgJVGpQzJSCYrodLSYRWC23I7kFhgEDuj+fAUOrUgRCCgbFJgj1jiCoAUoU0Tt83IQQsJ/3d3f39w/a3OnDTLj+6oyCgB6/Odg/eH1MCMQf3mdy3784OzwFpWj68f0LIPbqRy13FjtnIMLp68P9g5fPCU6yyDhJf/q/YhGC1vGg2iKxeAQkB0BqGoODNif4hFPFFKYUBJ11/RFAVIRgrWzw5GIV7TfhUdswIlVyIs3YbpiDgJ46yYPAOAMRYxXBzbBCj0Y1GOJ1CSiXeJVy0iHt32blk7hDSgZ9LxgC40ipgOq66K36Uvp0hIC4Ym2iyAgVubDzsE8QhdzEFsZLCWNUOqSMApkjiQ6nZQV1QbUCeBtRuFUf1k14EIJN/UAqyQEiUZ0G0Fi1OV5vc6N5FOgzQB0EReuybZkKiihQNlClbuLNqo21famKYST0hMBtms9S+EKVOYBYwbBsfOr3+1YxaQCD3NYNkwcMkXJmNUo7X3pdkACiawXlVER7wOArHbtVl/zTkd/bb+XiVTou/FHlSgW5Frdz6fobAAjFo7omcKpTDiBB1HnAx7kEkDJFqzIbkpfYRiAlQQL9oBSLZjAE/FmAxDIAGZwGw5O6AoCEk6AEFA95Fc6LquqEgCUTelTSzpdVIikAyCSwsDVjJeS20XA+ESEgRQKSz0TBX8E7fy3EUcHhp8gHuQogHTInot4LDxImsjXYax9IAGFYr2oA2LwIQdnCATJhB2ofc4AMGkBavkydA2QC392bgNZwL5YHSM29EZBqJza+HqEutQaYNMVhV4yiVwUOGVmUxyB5D+KsiN+q630n/zG5mSB9uiJg8M8yWJbAULsAX2XA4jOXwTAAhkffDoGSpFKjXGZCVQgLFRq9IQ5CEFIYVZuPU0goCYHbFgL8lYFAWF3NC6GTiLhdNl2paQiTljmdN8Bdy4AyoNhk6DVKldpNpaFqL4OCA8SSglBarlAEOu5Acie3BiAgoDUROZETuEUQxEsAZyQOOeVJhkdeFwjECUc1AXEysBpHNLfQoMsRoqIIwUkIqDQLpTrRxBsSArilIA7yXqubYdKMaBnPJyh7FCMEols6YKF5xpwETl7ZLceyP+QIDSjufua9k1sDkCuZQdJ/9s28hRwJ4dLLNWt8FuZI5RSNZnB4FNBOrgwa3ffKQOFR3K3ZfCe3BiBFURpI/phCG9ToSi6yQPKpfLs81b9Q0QWCpOnVwxqwfOCXK73Ccr9qLLisWAW9A8id3BaAXGeNpTpdICB/V0/UCvKnoNrd2NjVduc/7uQ/AZB/eDXx/K3b3RZmd/JfAMj5/h0fQw/In554f0tXlLmT/4D8SYDcUgrhnXyKcquGyD8GkGvXuqEE5JqNKD9Q9V/kwHNjeQLLv3ZvmO/z9SUfrj6/Mw8+hq7fu1yU/fbzYPR6o4WbfSGn+692/rYD5Ff2roOtkRyJPq3kD5xzzgHb4AzGgDEmGIPJOZicM8MA8/+/s9SNbXwzc7Ozuzfs3vXuoG6FUrWs16VUVYS82az5WTee7Qd5OqLbWw/kv2y9gfz9hmpftwb6ldaTon4OIH/KsLmTjU6zYj/c9B8eIM2u9HVhURkE+bfMTwWQr3PHphjID33/CdL9//HzhEnFtylgd1FS2zrDL8QBgWnN9C0JMvVHNb+ExcozNWi2XwnyJ8Lw3+Nm7wKdH7j06j3of+g46u2jhylBklTSgTYJEhj820oQ0mGvan8NFIrcLij6E6ylNQ7CcOhCu8E2Se3c8gr5QUoCmz4GUVGC8VAF9C2WIDhiXVaK+pQM74hQhvwRWLsFcSidUxBpTYegLHTT7j9TyilTUCKp5/kwvQSlnAiRJivCLyUFK1Qq0OGaVPrb1Kdvz0GaVTWzo5XOL/rO1Wa6y4NOV6cS+0puNrhFt0VAhB21ym+mapGmouWTOssEqlrzHHhEkzOqkkv/uCghCJSNLr1x2Q3SLt6l5jK8pFt7VTyFYu63OzC08knxTbbFjbPuGF4EJcgOaU669O6mAT3nb3PyyzeLiBJNenLSRwNIp6tUQpHXguLytzwYzvWgbVrjFDVju99NuRO6SqDvHFGyu0mQEQ8wrhtrM5g5m0rcrinB6SSioO/U3imWVkVUqzbl1SDeO+dnuifQjn36Fm/rRgGQ64RMp5VR0nfc5kF7ITmpM7Mc18rxrkTnKLKVIGdO+9OgBC3ickChjLvfWq+VIANPrqGTauTU1G5WlaLQtwvUhiNMiXeVn20KSr9Tt9rXbTBYfL4nWeet3WHq9EC6RV/if6o+IvjvaDfBvtwkZz4DEa4amf7kbv1BGBKXUtaqPa1vVufbtjf8xwLIv88XCAZjo8Cd3cAIXAlQ6l6Y4d3VBM8kahlQjJqASO3TqDD5snEP1x4oQSQCgggDaIASCoUlzQESUB9XQCB+Q+9Zszab+E1Ul/th0Q1uJ465r4NgkIHAxNjkbtPs5ujhfj+BZ23DA7DUk9T5A88Lx41ApcTuIBNgullQvWbEz3i0rlq4NYGQrAoE4QpguplwB8QcPkJUxx7BhOJwjTdWoLYxFwGZXLj0SBDcpccLk6KrhTduOBUUJqJKQKlCIQg2v7A4Lv/O4U+fOPojxCRIApIN6mA4lgbFHKeiYCDgf1l0ogAoQ24wjB/u94CgX1VYiDJOAOPHaiA7pRRvdrhWEW1AB3c5PXsTCFMLU4TiOU4odqyi9W4WghCNcLaLWaf4bG8cnrEflyAKjXDh9WgFAS0830vmMtI3N2dKDPWOBWY8BKIpLo+VoJh62QKDaqY2SPmPtktxFpQ7tTpa6xd+Th45hkARrN+BQkU5Vgbvo2GoewRupi49nGKPB4q5gqiOBe+jaf4TztyEBbEPBRDJUHqNvrPTmbqHWntjmUJPbBIBo7mqrTLUTnd00xwg2LOpcaYzGLzzwL3XOnQUmgWl2C4CCn8OcOuZcUqV4e411drNjNWxLsYTOF2GmkJImAuNWXeIrCVjHb4FpkI2g4GuG+4yenMB2BpxGnQGNYjxGPjkNdgOMKcdcg4/vQEEaoPtOnYObF9dGO2WLDBqNxeHMmUBkDvjdFFv7oFKx7vjUBL9emMxtYPNFdCjnMEaWuXvHC/bHEHMWazT8TVcmauustQ/9ReGae8XUOw7ps3mMSDhKKaMJiysLMWv1AZX1XIKgZ8F/5A1FAWrNkg6ruRv4Gmsaq06PKDX2qL3FNUcGGbMKlNG7+zbgyrkBmqOctlRA5zV8jQnrHbmDcb44nlGbykAx3Frxj8JjGxNG7QZVUHbpddXBPwudMXYHS7NXdrVnVRMm8Ou1jYdygHJxEg8Fx2OmZ3Y1k0bzNnfAZBeDpDgAP+ylH0an++agqz0Pp48RmH1r3f5NAdcgOU1vb26KQiA4Fh7cjJgrQCXve7pF63UGLf+kxPfqgprOs1w9wUoxdljFYSJD4nt5KSewsPAINBj9PVqjlQEB7rXLl/vkAIYNzSSHWqcmRtJpx9PglBMDAw85kFIK6Z4h6gOQ3ncxlV4MADMvIN736ZKiZoNs/5+IPMKJCwwxSaAtcd9UIpjnRpr/owKm1ZY3Ig6JsdooO9AhRthGYtgaHPLlZmFMDgXPwyoUc4Ds/xw+yYIw54vSki5CKz2FRBJJUAbVEb71kAZTAqCnK0JEDpOMeUdxfrAPCHWqnD0iVHvkADIgyMAWC9gcnCAWPP47AQ/ZLy1DKK3jMMzfAmlpQZ8zsC5BRrB7rAazCR4VMVOgf7ueYTjQcDwgKl4D6gliQVfQoUJC1cxFRnTw25gIsVgsVdQ4P45QfHclwZWu9PYsxF4+s6eQpSgWsTDKhD1jtPQPCqxe+DWoYDRRaEKJWGKVZVI1rcJDEeg5k/AuQ246NqFSbuEWV14nIpfSU/R413ERCg8pkwa1ArYRoB0bB753gXGyGereozxEU2E/B4Jog8Xdqu+GihKpTFFsX6P5It1ai4RgPMkPuE2vLwCCy/XgZlhnRLHDYCM+TWfPIn6KlDzxSzrNfDqCr2O5+zWSx5r07223KGQC7b6coEzzlwn+cLhBi5OBkGMj58iiZckcPcYK81Mv6yAGuor/bUFqHS9i+qtl33QjyVBCIitd7jbq0YbQBa02KqipMfpNJS6ZyhRsqDmMIFirezWFYBs7NiTjvp65kJKQB1bEGJVO4PpHdcMH3GZ3egPjQIV/zGgTEXFSNSufVa5+2o8L9NFgVH/fNoz59stxBTCaZoNFBNmoLoMxt3oErsbC2Z5nD46/moG5QDhj1B7pmJBLBlBsWAHS91AiSPJCeDqHZSohYgyJAPkNnbIWT//DLi2eVQObkeh0LOvUW44FpUEJvNyjzwjiMSPwVC+w555PFjZ9GPTEAgGru0o6SjBrn8nIM+YtjP8nUK34H6cYUyAEorlIyhx25VGZjMQHEttwvEMhd+N+MZ4f7b7EI4oPpl5acssVwcT6wqmVBQIeivArAHH/t1Cz5qmB9dXYBhx4kYrz+6sW4FgxfIgDbFmnYDHEYYSB1WsZMTE0QmKqnGXgpAfn4P0aU4GHh8TkM+izr8k4fCOg99P1y+BwccqmCUWABbq85h7OcVsAwYUZU0Wl3W9SW6MzfoGdxnnUMMtDbE4aFz13jsPEK0fiJ/lamASM/XPoHDplFh+WQA8vUbMPU6L5LWXBAh1GEE+GkCQ8Q1rYpF2hxXZWI/tEB7HmLGEgH8QDIsxHApff7ehmBMMxxq9q3Gpaxae31wSACguwdFzlVP6+zlAdh09wHiqB1DqJIDo9sBwXgYljahF/qG2N2jYe+ZTTEzSj8CwoUcDZWA4PRIAyVlF87kNRqPDBipLkNGjjNE8vIvcAZRY0CPinwRDXp6k58Ew51Wx0DyYcGtYs6SSKu43EPpnCTO13kbNeoMCJZ22RJEechSzkrqKLguG5SHkNbYGb1XcddlcNvNnvDrBKGZcodMACH8PoTzsWoeF12JcFwBxnoNh15uGJdQo1UDBXZF/bdRei6tBZJ4DJGEEobCOwHYIhv0UTLp+YJJLvQ0rbiS+RlFNQImRaVzqmOzhxMEpbuMmTilmh/i4VA3GEXb6hXOWGwKF6nMoM//D+0cEFY3ldm3DqkmCIpgfypjrS9Rng7TqdJIGso9FRLzDxekj12/bDYB8xubLIlRYennG5cs6lFSAqfrYDyWuG38XH0/BIBhQ3tteHP2Y+G0WjDJcnUzisK4/ch71+UbxUB8EKr023L8kRPJ6PXM0XdUMsw82ByEUNY1vYL0NuATUlrD3AIaE5Qxq7wxUqIXwSQDkxjulWwc3XCJaZk1LKIWFA4RiwVnTY618ryWwu3EW4gDRVVoSxLUBFfb4eFdgBtnQqCASDanAGJbePHZOb7cAkrTxpHBsVo1PFlmCEBivK6jEzpC7AOMAMTmOocKmBJDVLaiw6GdMSBBbEhR0LnXBffdCH5UAcmkmkP5jz7ElUPRchCqSBJmCEtVVLJX5I8XDHSgPX6chNup3bQbRaisGMArLAswzoDJAJDMuQW8a+n2RG1MhMpQXbuQpuHf4KNbtoAy2Ja5xr8K2GSadBxj0SwBZ1Ao8CGfRTABEyySRmZkFBSgW40QCyKS3AiVn4/RUAMQJxiXrunDC/bvmIOpQ1ygWBhx3r1svSerjorEFkCoiXm+1WFw9mhcAyb1EueR7uRUAETVRHD0WwHBQP0P0cQuUyLvuNF//0gDIAhiRALJWdx0Viwdf1Hh4eQPIbzsieadubCStrtAPBhAQguC2m4C0Y2bEUQXDjj/DO+MyGJxH2LeCimXeua4pqCTXevB0TQJB37546M84k+jJOL+A6N3I+vkqllYBKLUcIBTnGVBYT0WHS92AEO2OKDfW9cRJJy8kj50ockmztQqin4G7Ow2G5xgFityH/zMvbWqAFhvdBeTvwDDhAlwjoDDLk3QLCK6MUDo+AT2aVzBQHDqwcgrYOECGljDqjUr9HVRY7+KTj6gU5IFA3waO+zwCvfd+tQi3i3KBweEKuEzr6+FOQrPQc4AYJM+L2ylKkOwO49QoL7pmduwFMZcR+yCpeQz2nQHpRhMarSDQLyNi4QAJBYD9ISi8N6DgYpBL0ZUinuNKSKMYl7TSEdWJTxGgDC2AQLeOrS1QKpxM8wuZHLKc5R8HCHVpCtB19wDPL0n4hcaoDBAPH2Jp46LXUkyJIdY2KIonxxJAAIAPsW5BmL47/AYQSEyHfWU81XkMFQBx15dEKsUyB4iiAZCZxyt5iLUhkj7aRmGn3RbphZ+4WET/y2cw7IbuZqctadkz/74Z2PH2YK37dHb5M7Dp2FlyDpek76V9IAtUX55B4lFQS/m1X8ENpCiHpYGRKWOdcMZ7RHtULa+LeOq6mz29Ilj3JnauWE547IxzyQUlLoZAQm7gQLeX3+wJFWdXXTZChy9FT5vWzp5a44PYKkKJvRQw4z3dW9VZpUl66qB04Z0CzmN7S9PDS9hw7iVTedwdALonLlRWgO2uzdmDHNarpZzjk7q8tGe1qcTcRut62IyXKfDFmywVF0Cd8Z3toUssGcDgLu+s2y+kvr+s3U6GkiDxeVDY8xICXMbZU2MsizFdppQc8gCzL05QBIeLs5tFFeuKArn4TiJ1DgzpDnIu3SgisQIw1a0AZm1AqXtl9mITKC9ByddHxrxX22HBmMVVSpTPcNlHKPaMYLiMbZZsVhWuLsTgrzs3q77bKl3E0z19g6A/1nm6M6bxcPJRT6DV7CKoredwwMc87gKmfWHAM3AEJF7OTWRsUSX2QcLd8SzuB/QMNy87bwCZPMlUsFevAvMnsgRxXwagyr/kUfH2TWHsCcu+QSjNvYuUBqeAL/UgxCqzKa5xQ/GsisS8U4RNBT/aHATNbeR35wVyPSBgiUH+ML5ysBMAghP84WwBFOtRYPLAufUMgo2LFc9MUJDB7ToIplZMQCkNFEYesmxHBbCdrLQXFFm6zoWlW8XShRsI3jlPL0HwVJ1OwF0DxWAJ+DQHips1kL0wCJ1wFjcatO5qlSdCdgognFDiKhFYHEP0nv86JRBMLi9H08/SUZPwzdGKmFFsXJ/uzk0hnFv+ckPwfAOUsqDY4F16/mh6xI3+8+VTN+jE8vKOGgQcIMGN5X2x4lubruZ2QdiCczWfxtwnUKgTy8v7TN48ulzdcoNgLw2CiRlp3B3IX20rLtVAYGnoatvUCM+neEp6a2h5g7B1oUF88HkRFJk19/JrBWCvAWA0oQIGN0DhvuZ8YY3LpedDYO7LSEXiLDl00WCysE4I3DvCx/ry3QYjeJaGnfdXSRL9spwroBZiPyhBxgdONJqBumMGKPl8w1257lN4zPXhvvo9Mr95gMJvVhDl9aNmWONXYea3O2DB5/M+OoJAjW8lyx0mf6IZrvNhefTlAVTI5Zdub3fdoAZqvQMxn5dc/zbFJeVj3/DjKXD92yRQqZuBJ81JrLdrDIvDJ8PD9R3QjyVBvuvIpvn/1zamO7c/WyW+7YytlVn++/1zdl/Xdv83lr7ifbOTcdJip7PK9l1wDpB0q9ZvnzFuP0XSkdTOSzvvnaWN96DfdPT5ffd3Lb7bK5IzUhyNgP4YQFR72zs72/fC7N/k6/ogboJAoPR565MKt4kIoE488ZeM5pOzWWB8yQ2KwtLp7DgoPPlJuW5eenNkXw2Ks/KE/KmY2DodqQmpfJb7sjmHaKICisBCfr0WAeaTFUC1UwNFf/7LipujdS+//qT8aPsg3+iWrHmUt92hpniAFE/59c5tJkHjlrQ5omSMtJxlth1qkWiLbDKRdseXaHn9bPomefPeKdf09tgswu8YFRySd75FmMQrY1Lm9w5FmUSIEjmD+E47PJDvaZtzFLmWZsZWeoerTZmxVmlGWt5RSMspKoF+TT4y1vrT5KvFKKjMTYuPFnplBiiIVLNgjyLKO/xPKW62wNyZ/JVv51cJfIXydzwDy6XaS3+0OcjPasCQltfOn6ckWk8Ov1voB+poz/IDvJFvvJXpaPy9oPoOA+SrzH7LJz/p6BVf3KA/xlcHxQ5X198i8eOe6VrfA7RhmzKBb9rEJhFPLddHAvvthJoytUVa8CLuOL1WRpk6lam3wg+3k/7dBv6+/04R/+NqQ1/L/tPKJuRP12HjZH9C9+HjqdpJ4uwPtgT5HuudyXJkx48jU5Ejv0qpI5n8PSSILN9/XnXux7OTP/xjtgj/SW9N/iJJT0g7n/93nvXN6+MD5OufvnF1hwQZGwS+O4KZVP81vEAZ/lbX+q/KEYJgz4+rEwPkI6tu/2Ovv8b9wbrYjiPt2jLGEhhpaXwyTJhBcoN4r9fQpgtDQ4ug8pRSCgIj4yJTK7/sOPffSQByzR0GxKnYKtMStH3sOeExkK8SQYuIYKGlr9MKCKQnxUjlB6g0uacMmQQo3uKkLCCdKlmtC8FN8r6Gj2YK/R94/TVDrKo4OvJOT0i/905TiXKAUMPTu3zkrTwRyn9RvGkiSll6XNk2I6MyLO6SnST+femWNLPzGyyGpCh5WsfQo/eAfJ9Iuz0HHrTzJQdhfRrkB1kRhWWAdOpUdapkiRjTUoQiamRvNXxATxr/zOsvGmJJWwJjPCDomSswuPYQMYGAqXlUdgYbZsjdVDnKRPazHnWPSVafmfNQvpmOylyaxwSOB9Vyb/H0B8bGm+RB2qqCst+jHg00gRYZnJKc6NJxk+Bk9HiX8tNIqCjeD/tE6cg45QHrz6pHFU0ipuBxRPT/mYISUE1OVThFhcSXusGXYC/I2XtPxdNJRWZFCpVTg9IRXoGVMSXAgpNKEFoh4bmKyGKaHFTKZUjBxZrbKoGKhJmzsLon8mtRQsT1w1m/vRbW8RofZ4b11wyxRvbxKZe3mQ09IDgN6VPP0G8jdweGRSOFcjVkc17bgNUZeB4WjDbtDXCpvzbGjZJK6W1I7zoPRbm+hM1/CuxbbGb7mNI5CnXVcKSzj6CWW7KZjWEgv4fblYTNnskCwcy0M+6aeDu/4LbY7Noz0NMJp023BIqkzpiaVmHRgXUDCAK66LLNMFT2sKFRuEd2bHpXEMganNNxlyzvCCbNLn1qCnRLm0mtYs7eeJoD9lM2xzLBWoMvcxoTWptZr1ANjWNeUDkDCkZng5XSGytTDSpcY2hkoWjT5UAQtJhdp2ZxWE/1ecapi2LUaDY3uB215l16P6/+Wac36/vBTt1FbcLQZTCodovAbHLFZnEqgKjryBA3LoLil10EpLUY+2PWhj6e+c1fABCKcgKlx73xsUwV2It5UDHBtc3PgDPUdAxL8Qp2vRnAfIu0ppqNJGNK9fAaFLpPAh/jwwtgpwNuDDomkR2+hNeNSD/he3BbeoKknmDjcXu8YpwGrs9x+JgYVQxZgQZwiFU+68bJDDIUi4A9NaWOds8Aux6o/Z/wFEKP9wyY0NHJ+d1TryniSCP6mOtRH7mAzBVQPJCIgKAyyXBlwKJfiVEP9DtQFkzod8wh7T1ELMr5MsXmoO6HwhHG4mO+J1C1AbY7YPpKZkWicmEFMo4Z9UzXM6hlCyg9zvIMSq3ldtQE5wNw54J6+ECJS80uxrkq2Yoe1K6rjY8l4+4ZzOiA5MBGpcf8GZHYAkyW0kewyi3v/n53VfDbq/riXPuMSGsvrfogHiv+GoAUX7FnIQSH/OC60PXgADmdBsOlhcI+C4YrPbhieTo2BSj8Zx6HGiiugMnTEwS7ozitQo3qEOxbDNIpDmsSGAyZsKClRIDtKodPcRWwGGIsNAUuG2jLRgNKekCfAIUxKTojDDk8xRmcI4AxB4pxnRsKbRiLjgBw3GBCxwWXC5S0iBxqUYjdi5PwVrU4qu6EGqsGuJaFBQn7OQNpUOnBE3+Lucaf1Dww+57KJwuQyYGhvIIpfwBQx7Z5BpbaBkPakSYkqEmrHMfScchtGyhUfje0S2B44s05ZweWePS2nivbAFfLYPh1F58a5XObCbes9v7O0H7nionp9CArkjqXGQjG6vqmLQc5KTh8Cvr2jN+1HPF3AMj0DtadUOLeQmho/j1AtI2oKBh27IDrCVkd7yrxKcT3SMF/C0oo8lZQqP2LKHbpzXr/BbLG0F0aap0HSXOFfDYCe2Uw3GoZLnKYMIJhPmWC4Y6p9bmmGYyza4PNawX0i2ACWWtDRr1mRwDkOU7SsX6pKyKgS+NWD4bJUAXTVaXKeNokkj0w2GI2ituUdt0E9ZHfOUmw2s35WkXa4LjwANlMaDkMha4H9y4wTMUVcB4pTZmtJpUCp5IhsNXAMH0u1Jgo9OsCINpJXkhjttvNDo8pFQbDahWfqzzRvgeLWzQbo5gzA5sXUAroaRMkHPr0SyUIwbhvoKvL96iNgjSPvBCclRglbUdoeDQuH1+WpEdCZZnzlqOiMaAFrfS2iWJXqPULiPxeeyV/F4BwNNxrQUPPYPQNIEp80hJ+ll2J7TeAmAB1aA7RLkNmG4RAAITB5HjmCnaVgJqBkLOqv0elC4Ma4uXpNLDnbAOIQQZI2u8yjshehLkf6XwB21yCzIPCsIRPscswjPkGQCiIdmY2A4ZNGxjUujQubaANgCgwFrcblk1vRAK6kQLZsIBAuWgp87n6StciqqdvfO1e+/l3MVh0jJtSDYBwclOhAMbjesOXJhVF6rxAJppeTQVACIMrIQ2xzkAbqBqLBAImKOIctsULfBkCo1wf13L8DiB3XC66gONGeyV+6WaIbNVEOb6n0ZwJKakYU4JQHHml011qviDxJkGmHXYdkxWhmEl2hBQYV4Gi0muEivEoqlRhs1ctD7Eal6KRgVMajfyjJEjxFTtF/rOaKTLS19jWAAjv98vaRtQ57yYuMcTKajlAUnP4soe304y3/gjg7nVjXY+miLbsQZdG0KB88zDFcGMRQ6wJTtetM2H2AZLBOBWnshYCwYENcHGAWJNwXoGoHAk8pwhB/qA8AcxZKlxYacO45QAZjFdwuCpJ9AjjRKIxRnAqLbil+wpCFamIbXOLL31CvJ92lnAJkuF9PaXA/jsqz35K8NkOZDhApjdR6AsCo90lIUEsu6CIOBYleyvDEyDK2AIO/SYg23cGMwfIjZZKQ6zcA5hQ/FhJgv7iuaxQmBIGIepFEPYlpPGlJkD3+vzV6UnMarsGhrdUkCRDuHdroe4GRcByuO2PWY9BkE91DzgSBGMNKrn4HBgO/fs33uGicy6sy4NiJqPx9R1iyqgZ6DKM/YMkiDWJJO+1aw6G+a7E3I4b2gSimr2ZfErLEO17def8LgLtJQoxDpBhN1ada7OL8lJoxuDesGoWEdEaos9bUxiZmF/y9yu9HgTjCwufCgQ7Bi6g/AzVEf49ZYh6I9i2r5XuxwGjGNv3dyXd53Ej+KyCwbWJ9eHLy+u+JC6HCRB2xNVQDF9NPd2oIzEPahYwTPWNYcOyVqqFMacdFb/r8OZMTqfH7uebxaqLJHbcs45DmMzG6OLIDM4X5pP+IB3ZmM87siZvGIdmMMz1VTAhUZnRjkvQyrk3dS4Kcw0MhlPgTvt8f9S7IySIIwhCsdNdcm8vQRG3r2/o9QywGudr2i8g8RlQpLt3FlVzcWDrmktfLfDZWis9q/GLJUhvBpRCLQw1VK+f1hy+rNre1ae3uLGT2Y+WX0qQBlSll2jAdwGKUU1XaOXgxFEBtobub+z1RYw3qNy8LIPCOHA81N1l1y1mX66BwW7NZsl4jFR36fa0qPzHAIRg/Qa3CTAcbxECt1VvncL5M/BkMOR3dyjBs9W6HSwRrExi9LMSUD142LKrPKTTBwRCAsuG1bOJXWDsi914XcCOtXw0BdPnCm5t1iHj8AKeOPnJU4a9Q8znQXG2zJDQl4f0jl1Vt7RYvDhk2C4sAOdnoFiqga0bhtzzzxh8IKAwXgDBctXqzATJcgVTm6Dw3JmwrbcOubyFkg4gnHunIeGZhXrZah0ZR61cdt7yRju1G4/6sW0tV+dAGuxdTyLyRYHjHCiyDya8cla82T2ZyvyQYd0zS7E5BYrEPghbMk7PXEbFwOQ0LPKsZfTlEsYsxyvWnAIEymTGudFIGCnwXIeGaYVnC/hUAkN0BaqRRntpLeMfQIIQAuvJLqik+DoLhcPM5Hn1aO+QvNXj8qtg7VMA413DBeChHgXjBY7rK41cRjBzTI3+XiuY3a8GggMXQLUufOdFNK7fsaT18QHyrRVtQqTHr2v1FHnXgqUG2kz/iknPqZQJFLN6QaxTbiWE0rszOW8BvlJL+zNBhFvx7CTCaWc4qYOtagL0PRHyPVOj76hT7AkqqyPF9SaVH/LUQFDRjX+tJkI6XvbiM2dfP/Er90FaABl6PANRRXdyxforxv0WJSGgg7O5U59BAId3+Ijqtf4JYjylROLlGZTNbOcO6p8FQLDzUsPSywZU5lhFAgjVedWi+Vbqsc1dkH/MHISgpR8k9HF48KYjJUe1IiWtIBSn1YFASRtu6vY0F0UokfLzXJPDc2r1ri0PKpNvVcWwrh0NqJ/jx1NciU2upaU/JVMlIr8pImxg8Rge10ZkIZ5Wq+d1l/tjop/KRGTe5aCTLylopzKbElRu9yvtVEiTFfkNRVoz4OygEh99r3BF5AfBJ5o1XBkCgcCErvCrJYgYYpl0wz1YdHRbnLYGQMb8FgaMZjRx69AbQM4fNd3d3SdlYKwRxZB8ecKkVqMdMrwBJK0pwjys4KJEIQMk7heSCHQt8+hLgvxDhljf0r8Qd8A31GnHr1xGa3WQp7Snd+q27httVusOBfnaflPOlrEO3f7nE+cUr35nGORrRFiyQaS89h+JfDu5RaXGqXyz/Nf3mgOZyg94xCBQLDfai9vA/wgAuaxbQXW9k1zPfLsBELOSYutlj4sLARCoUv6R09MVi6aA8d43gBjrT+CGTgRAKIreRd8dCDP7FUQABPqucUgQIZOuR/cPCsu/G0B+FESgKsYD8t1s3HIn+Wo2EakSvhH+sxsjpfpbVclE/piKCPlZKrLA+NH2+vWrWBojmGmtq9cNpTeugslY30bFoVURrNaPgVy9LHa2otysO8VCfR2jHCBiiGXu7gE9etnCqIZHPfdaNW4QZveOAUHfFTDyUgIxKaiHUpTqt//DABEdQ/7zXYC0VNS/RUIk/vRhH1H+5zWofp7Kz7fXLwXImE/jMnvrMd55r+sWZ8j6mASsLxmjZ63unda6YnYhQYZe5sAoejQOUqm7wJD/7RLn9fh03KC5Rg/fSQezP+oZKA5eXMap/pcq4HGcGKa7Eoinhoy9usA/ZRXrj7i7A8BvfsIpXiuR/IzWbSeRPziilKjI9fwoN79DxaP9VX+lO0V1cchgvZuQbEquW40L5DwK9E+by2nUpm0jyv0ETzId3QnRjrwhrLTmwFDTT0K1UM4k+JpeoLwJwoddYuO0Z9VsLIwatkGRvrBYnLu4vDAa8qP/pDmIPJ7+GWeRnd0FUtAiRfCeoGyQ470rll92CQEnApkb2QbKj7zxjzP/H5AnUftvAad9afKb1p7Iv/HUzNZ8OvJlm0U6uP1HHTUBWm3xE6/VYUKmZbfku6Zh/u3xv4eW9pGODOvf9fYi13+nD/yJXkg7rZq0L1ISHkiPsq2nZhYRLwq2CohoRjbqVd54b6VJy4aTVMc/SoIQMJVoB8L4VPL3MXR3C6k5VGoqBLQ6ElErAZVQRSLqTltpCExsfqJyJ1NtTfDSf3WH+44RuYUtCiLfB1d3MRP9TxLkbDUI6YzNneJHjeLmvr2xTCg2tr9uEigy9l9pkd89bKBYH6jzswvvShP8eqXiP9+Jp+wAQRt/BqWY0WmP5S+AyCff0GbIL6AVz7D426GY2O1O92nsM4BC5+vtPblBLd61DILpFZB2w2sUnlD38IVEnCH4sg4mpRBUblkzHxFFJA5alco7DSJsZW2ltGeQc8lhsxhF+JmIeJEffj3IW8pmvUc5YANrVt4q2nyiSL7sgvHyhj6GDnNz7+3ONRvJE4tASv+qibrzVShbVulaysWbrs637Qh+0RoNwdTIRgAfRUvqT3fi2TmUoSgN+GZBoXQNeAXJ1seg3dgRaSY1nylWNBUID0za2wWNnqI2sH65VlN6ete2e01YCZneGy2luOseBYNcem+g8JZOcTDU4VyyVRLvuWjy1Wk1tMkdWkGrmLiRba/LObK+dbC3FJsddCYMOfHfjS3I5S1SqPIevPXorw+7WkyltZHOkwYtopQrb9KOVBGEd+V78u7tPoIK3wdg4S9z4tn5coSiqE+tQIlkSGcARksXVxMq4PZyPHcxqwTU+3cHrwogsl12JnLbBJ6V1dcACLm5+JK12QWFxEAYNGUAihbxPJLCvgb3XeG3n161f3AXJVDvxGLVNSFz3HcXu0W/CoFPDwc7Yxjb1NiPDjE2cXVRUkMwODs5+HAaxe3FyhQImdtcPT8G3J8UyYsd3uGCS6uniyAYXDZ+Wd86Br08+BIFFDtjhwd5j3LnIjEKiuDpwawKOCup9y6WehD+4sscSUdx07nqzafHGWA0f50cBSrdp3DvqEY3B0GxmFdj5uHqkBHMTNCNCw/mz1cbKVD3jdysruwCU48bQPZ8dVsNQhfvLtY51pWv1vJIGPOHXFaWKEFh2Th9NqpNL2xNyBr8kdeiYUkFeL4YpktEAGTZbSgf8vEer/npFjheNRzdIz0FzIXd57kz4Z7ead1jBItFw2oUlZzBuWT6dYuYlH5EfPwpEkSVc30ZfT8vUDpy+msgPbztzXN/eU7zSxKwDeszupc8kNCUXfUDMFt8/7RuiGLBZzfWh4DlR6PNrxkRe0ulx0ty2j0ItXd1akZFYDtF0RnuiqoD0ufdo/VOp+obmHT16q3iUNvSo8vo764C65qyrX6NaKx7yHCDre4h/cu5QFBkOGU3arqsOqPPq0Z42N44OurBdLfLZnl5AGE6ndM7MIfF3qtPWl9+XGnoLTvqN7g50etdjxabXf9S5UqvNtfLMpDz2fT6uhFrfX1O67EYT2ocToffH8CtRmfgi/rRxxrKvSz4sgT09E7jYcBgeVkHiv5yt4sVul1ljX8M7l6LwTAQUmDdt4uSz56pTwPLGmtGcwmGA8Plxl0BWxkw3PiVKAwf1PKDYyHr8rpuSAJI4Wj2Kf6AUd3KUzIvALLet3y50DcL6EpgWC1iLvR6M7KHHSP/4BwljvqCwEKstDG8glp84fJLDZnVp73T3386uHOeIK3a/f7NUEK+Qkei9fuujwYQ/m2va+rO96dD+k+iZSNgnY5yHQAV3yI6wLjfUYCn91rsAStDLiwM7GJMk4B7YAfIdas+cY+Pn+s3kjclW91rCwNRn1czYPfAkctq7l0jp926fjGyMvsVUHgzwKU4hECxWD8HEi8LgjyLuwhWYypQ0ngK9HH+KOZ8BjXy9TuKg95xMBVB8nEQ2q4pBIaNoJzRtXoNOisHWQDXfT1QeR+QqyfBbAOfEInZUDtZA1ZDSpR9lyB2B4XRQqS1gpg2gsmBMgq9I8Csbxe53jHqd2K0ews46mLbDfDBZoPSrCmpGGFKgq1GrkR9B9h87EfZAffJHnDepUo/noMGKAi0+6AQHtIYFrVKHFVBSYPkBuAZFk1BJC9bmPSa3tT3kilKMJESpxkZlg9QMoMQoUaDqgsE1lOoLFyceGneygkGvEGQn/vyi38gf1SCCFofzhzeHwcImF7T19XXXpCi1Fu5suBJozjvVoOelTa3fLOYr88CZyclEM/E5mb3CKZjJsyeTME5kF9K2PoCdi2lWNIIFQqajG9pQ5NAZGZ0bOQliRXNcMJZPdeODuel4z9rYFTrojjoGhPiweCNEEwMnIF4NjZz3VtQe6fBKPpnN897JR+Z64+TwEN3BTBoKdSLS/lMjGZP8vz7ngNRuhO5aU1P4CQJZrGh36d/zeV9I3ClGEwhKxpoXoG9O5lPaFMk0lUEYQ5nA/unUBJQzNajQFqzhOX6SDI51JuFy4zg4zZYbAjRBr8x/3ou4TWiMLAi+uRNPs+17AwhJcH6SZr0rcLqazSFa1g5FtKsjEpO6rxXUxwgZQ4QHYP2UPiUC4VBIkJVhK9nlJaKWlUDtuvjEBIkz5U3+/vSXCOR4eEAapt9wkRQGgKcSajw5RrBrtPNzeXHoFqbWWMESe9KFn/cvDDB8/33yRBE5pUg36XDn/fdwGLtdyPmwwGEwPnYNWBhIO1TEB22QqZ4DpYMIk7v0KmtN4h8bw+w/RjEQ5912fl4i0+PzuuuBD/9WTYaDAmPbxNKWO2QpuqDUDv0kjOVqcd1sBnFuna06xKpJAfInabC1dQ+Q6nLiJlmpYurEl35lfgsyN9j8nGPO28ZLn82DMwJDFlTBKSRH4quKzzF7NdbmqEGRIPAWn0RgzpdccRrYTB2n5p1u3jttRoMButkRDPCgb0D3NTdo916a4PZdcw/1oDJk1c81WVHHc5hE8XiyRy0cf4+p6h0L2P7ZBLQ26AzItprNDSufUw0cMpQ8+pXP/sOEOi7ghLOWIPfQ9WwmVNfAgrXA8Nu8WLBB8eRGpscIE86Bml1MK2LAOq49FpJ3WniSKsCXbP6Z4WkyF2DIewtwM4BcncAYtpzpRaxNwQMlThmVjHVl1vKL+1VoEiYLZPAfNW/8hObupfTdtvqWtNSJcN0BrS1itGxgSXgO6kZbSbIdMAmrObMXbS5O0yh+yKkHW0WlSl9fz7/4QACgqy+L+UGJe1TkDusDy/rENbkcOrzANMhhoyFqyZ7MVF3A5uacZTKr7M9QHZgHRQU8/USkO0VdnvGupfAYLRLZw+XTgpguOkeXexSp7uFk0mjQwkk6lPw+PJCOvQ/5gDFsFP4G0ZeE8a2bxdINgCJu2ExnTX1XQHZRn7M1e9Z9xFQ6E2gGDMBnzVj0Nn5SOMCAefIziKj+Nw9DmGq9PEGmOXC57zXdFxfAxWjmF4PUHqcwjnPxslrLZSg2qWKaIS1Bv5C93B6VcC08bW3v4GLY6noqjcCAW5MDSxgpoF+eHwjWD8Jpx/fNjAIdgeWQSH41uZxPgQlStyturDhmtaZgIgACLJ9u0A0LpTxo31Z8AYzgmFquALzBBisdwJHOw7MtgEkG+9p7tds8YaGZ/gW9Hdud1V7Dyb2jAfywUzhS9ApvSWhLWC8OTeRckx2jTbzywubAVfX1sa6Pg8ql6SwbQIPfJbVKgrSUjb4FkQ+GkDEetJ7p48E/QM1rA1oFnFbn4G9ayp4VT/AWNcyYPI7UR14yq74Moj05irZNIM6FptPP2/juG7IzrgkLTKPz7ibHTlZQ2k9uJs/WQJFf9chdvqUp1p54rPds/N4Dhw+SmZTPAPm4GS5Povrk1vPps9GsTqwuMusve7+zyfyFOTkE5cVUSDpU0zVr0bXtANTcPBEsx6eXkN4MVPfR6I3GM5WCCZeHrKFPTdWNKNA1asG9HakNdpjz/0EYNSCYDqmgrF7bld0Tr2vlt58LIOaNZdp944Jud5xxKbBkOvrTgLHj4agZ6MGZYpLg8v6yOhGvDeI5It+cErrHUc5BPWw352+2cPZ0mR652QRFLRgAu8re436FfaUEvlQBCZVuA0g/d1BjOtTLJKl6B/ul7bdZkCsQ4BhGpjzfUZPmODeLwDiLEnTEhisFKoCwqPAq5n282Fk7fcC5LNmt7Ukzvg/aW1dmquLZ6JQi7vWQv4gB4icn0h0DI6KTEcuSeFaAa6saIeZsnn/TSHy4QCCNobli2K71wN3/QJY7lZgvbc3NWEpYbF+D0zWt3HY5fPvGbaw6z15rJ8kgXvHQHdfHvRuQGPNh3qEKE1093aF1oDlkwFNbBsEzJYDBvv8qSmRPmr1afyvhOKoVyHxkPP12pKOSdS6fLFtK7fHqPHp6YSmNzSrT4IKQZQFDrrUgE2HgG2g+2g9RPvre0D6ZBPK4oDGsOAvIPd4Uq87ClBd9fq6dEGYzYDK6wRGfSvAgnega7iEimYZUA070Xg/X1l0hsXhgdCSPQm4dQPd/Gtgt2CygVjWgFqGgWCpa6DLf4mzxx0w9JgHuq7yWoah1auBXtcu1N2rQM0/0NW3hFufrys2K170KmXQOgMwDaWMmU2jEuwgZIzXKiE+xHJIQ6zPDqNxaUjZY3EZU+uic73eXdu0Ge5GV6d3VQ8+Yz6Uselq2LYC5T0wXF0D47a4UTeNQ4dRb5khRosh9YX+ziFWuncfjFIiVIb1WvsOpQIgCF9rLcUsULBmi5oHKF+detc6A1jJZd+86esBUS5ZLJkbyQYB3L5jmQ6yRa3lOowWQLCWsV+kQVCyu/RW/QJIZERv22Z/EwnylZMFBGNZbieXjyM8BCRcUGNMicCuElDvqoDx/goqdN4xmy3s6uwgiGT71RwDaQ9jFXnoqih4hAGT0UJWxZ+VYWFy6Sbw5p88XBDxl2vyuJSGsypSoRJ5hQmkUXEApKc/gIpKAlWBAOk0QLI9gKmQJsoKIpwj1W4EUGazjI2Rg8xkITxR3wclo/1pBpodBWi/gufiXKoL/KOubNyDNWoiNF2QN+0qhUbFnGmVh2enjVoi/Sr+vBsAEe+UVQKmXc4cIo36VQqQMUY9HkYaxALNpiCNnCqJqCo41U9BQCfnxmlFTEpqk4x5KEA9Ig9o4XiMKCjGJqdGpc+0iancQYFatXtQpVKDhCcnA4C6B+jhLzEuVgDm7oMREM/UIEfb4JTndx5jppjgskBcyHdt9H8aPgUHCDzeo8GpaX8YwS59/iyLwJeFwY3ebWCl+/4s52gAhFq10d0lTU2aZJ6nmKBDcdZ3F5yzxhV4AwhevbVja0iB2e6b0SXfhALMZZ087NsC/XtIkB+RLETeaH7nCsZlAIWiT9b9ltPfO/ekRA47RWuTrHwnBxIhuWDHEyDS3xNolm9SxOTJIhi2u8daxzTeFyPv6JAm550sErT+yXettGZ666513/bW7xPot9TZm/9Eoc649sPV78u1av4Z42wUmw6IEnyNZA0MM5p+rA4Bdy5Oy76MwmMOkoChWDai0sdzbfpGcdPdA4Z8CuBJQ0ZZERlFAyeoyzUBovC7QUgqgfIRCLSvwKwFBPNdo3+TIdY3RYp44/YfR2qCppuOqq96avUu068cbG9GSWGrUzUnZy2yrRNJ0tXmIEB+6uzcrRvSzpb8Cdvtjp8emEOLIn97Zpn59mJyUpM8bWO61QryXzm686k9bFF/B6bmPFeOlW/QWfG71qMygfakFhabJP+IeU+Gc7+EOYqoRgHu1GVbACSVB2NI6JD1BcEIQbq0da4dauSqgOFmYBRbZjCKs+5dARCrDBAgts1LrthlgBgaRb5sfd7UFLHqAiLde8B1KPdl5ODl+Kvzpb8DQH7I1R5BZHbrNBnEn+MwsKls9bWkH6LenC8Gc6fcIzEB+TkuWuQ+nv/BP/ei2O6SfBrx7RqxUKFL4roMOBZAKWYdKHR7ePSE9yi5oC9jbVgFCndvD1bF9DvcPQgKijsdE3TAhmu8ZELbBMiaZmvrdOv8CWlzZllfVhJYLSunpyO5v68E+RF1j/9oAKezzI84CJTPvLaIyEkg31f57qz3J5VZZS7aLLsIkj9e8uMf3esEyNxJTTo7jZnhABhUjn0hQexJKBlyevQ3AEKh6BUrZ0Y89UWgxKJvFDkXGMPxcFhIkI2TQUGHQFfiJb8YmgB57ovIwv9gZD/KCIXz6Luy428OEPlq9w38A5gC+S8dDSUt9ZyfVG74PrJbFP+eh1s7ce3y9vCAgDkSYDjsHsWFE0jEGRpReez2cYB4fJNAwDuNHs0GGC584whqpvidXXaYFLOrIB3Ut4DANLwHaR+kjECXmMUwzPjlLBu+Av5Gy7y/v88sDaI5Xf9KcnSxU6aw/yxBTJtc1qNnX4YTZU0Jkj0UcTKphdFvSRD3Tcv/MNZnfmY5T72paEqQtUlp3f4HG2U/3ClB2IcfdhGCsKUv92njYg+47Bo5HBkuge+kE5XetVGyZyI4OymAghh1nxJWM0dOd37jytgdBka8O/tF/5Q8pJj0hpKHC0c1BLTG/W2LlRFoPwNVG7ChudhIGmcQifvtWuMTQIe8iYm7Kvu7AkSeTMuzUylsKRkxCsc+KI/r1KISIUWxCmW7ghFMqWjrs95ZTkQwVLqFgdv5FCQ9z1wZUmkmrO7KkopA3TUDKhds/i/Ve1EGhUSfQbvzlg00zQghrfrFQ7saKWtyEe7OgogIAnMS46FJ0PamkIoQQREt9ikj0C2Ctb0WFabrxW2ntpQcfIDj4WKTeMdmMRueQbF7ZV2eAsWnWR69Zy1yxYaxc4VYs98yHMylb0FwM+QsKRYiIFh0DuXCTSMDlU29xe6cBDGtG6oTDASvN8DhLCjcTms5F8Dy0cbCxIEmCMLWDdbiIcjfFCB4r5Pzb05TYFkD7cjXflLn4g703You2+/h4Vfot3Ip/Lu87Ixejjl+kklS3GbaaEVCx6DitoNJitMj0GaC8J4mPY2Lb9X79WD58EMnFz1+T5N65hWmjTGQtlqaTV5VgbQX5BVGQd8R9HwSN50ztg+hh/q1caDMWovpThOyrZf7Vg50xqNJkuKmK8CfQgv/YUDx8QFCCLLq8OxGBQT0E1cp4hqVp5/neHh7katYJJXa9PbDSgEwFdjz9hxvheP8xXYEOLhCyQOK0RIbT17kZ4CwCpHZq5VbKm33lZZHgoCqn81vz1Nxzm11z+M/A6Fw29lNKcglBcfUU27vfju9aCO10q7c0BHHMSgWH1Z2kQ6Kg7AeMMGk8FgjckXvziu2bZCzxFVyHNi39BeoqrZ1J2NO1a+83SsgsL8wKvCTOEgIW9OzqwsFvweIvF7sRQDbDmhaiYI6PbvP09mn3GxtTzRGTXeWZSC3d5tC4Kw9fHZDP5/eu1UCrJ/NbEcpoEyDwP1w3jNzjJ4bQqC6jYCwjQvOEzu82/qk+vUoaVqXBSGyHrF4AH9oLevLj/RN9LULQdKiI+Llki19EFGS4VbDO8Val2gyHvn3lSAUB4ahu0zIA1TN64b4GLDh3TztXuMDz+SKoe9SACRf3q7GejCpPXLeDW8CaufFnnYIODiA8QoMS/pxy8FOcQVENwdjeefqWtgqxI5h56qvH1nL0dBD7AGElHU7nzNeSYKkqtMXfQlgvQx80R+e91bD86lq8aCvJAY7AiDIhZJHXdk5bwBQhu5RtKwbQqP4IgEEyb58ztq3AHpR3TNaMKjrc9nYjC2/1D0h+C5oV4+O/DtDB1Z/AciGpnfKlgqY0fK6bPN7oLYb1rVGygFiigdxZB26s8XDoNZy7bp3axQUZ9oul20MW/FEcXgXpBhvfBhgLJeXzfoIxs3V8rLjCHDrgNeuzZzTkcS9H0T4VaRO+3pGp8C1bX1raOzXAwQdmy+thA7tpw4d4tZdJ52Oks0ksKq/WMw4Jv6DMam/AUAIxWqcAZkt1PQgMJxDrZ0CFnQo8HOnzyc3zfPQrm3s9k4A88MK0fl6Yh6sHmAxHgG0tcWU1FrmYE+fuk2Jm6K8iR5Ngp/NyuLebwISvQWxDe67B+5jEexMw8O15qYTiPrmgYU4gSRB5rCrqwCnZWg3gJoDN3bO5BaWBUAwOjwDHA9sCH64t7iaGVKl2zYeIty9ACyd7ALGEWD6DgxDnzERYgQ5jQe5I0AZX4OrARDtGYo6JlYsF2NqUL3wC49nLSWY1EWAi2nce9XipKOVo3UDir5NINs3CLcZAe8iEPTt4TYlPGad4ZMLBLYlDAc/ADj+qxcBmds7XPyP+1N/D4AUuT76VhEP+tvZW5se7uGJjcP8gGnNDIox772s5rNW0yUwGFcAo45dEOXc2l4siNULMMsGZmLqiKXsphwgxxiy36veRreF2r39HOmQB4Q7MTgtQompLnGKdS5uArIODwdI2J8GnJ9xqaXcuVqAKAIBRBwzKDlqC/erfVgyAuVTLAsm7RJAKNe5IETlmAWlk2v7/lscWoSjyaf7AxvE5CDUA6xZIEwjqFJRqLAfx9UBlJjv88BWvZy99H5+A8hQHkosX2M+rgQsEwIgNzpGsZ66X7gsxvBwLWbn+g0wWPMYiwdBme4WbkujjIo07hMyQBxnOLA1eLVn8Dm+Efjwi1x/Mj7k//8BACGYfgXDaRVH8Yvr69USbrqvG+GW/A3WrYESqKdtqxfDr5jkn9MeRz/m7OWLae8uBwiSRtxVgfERnWsSxDwHU8KsvRfNo1zVX9/FcvDo1IA67sbRAyhGY9IcxAyCgiPNAYID42UidYZ7FyimHGzSr7OMK/0zSA4fNNhZQjoWrngncS0z+UUCyL4ZEM4zsxnDwXXXswAI1i3VO7NRMJDVqYgUmXuA2j8JhnkvpkdA4fF6YHYdNMg9vQGkXJJU+lTG6s2pXQ0iYZAi571ocJEUBbkEWQSFdQnjulGA6Z44QG6Fq09bErdxwtvoDE4d53UCdMEVL/2vIeSHzMf9HQBCMb3NAVLE8h0oQDGjVYK8+XdW+8VpghEbEc6ZJy3ixy9AmwQqsTMBkJ5Uwf7MYURX4iqYxcrTRp8QEgmtkmJ6Cx4+ROESZJlLkODwrjRJB20C5Ng8kuvHm3tONQ339BATlyBG+XNkmFhzAZ+vpOnJZwkgt1yCsFQJhgMQpG7xyUwx1XcGLOhlgCgJ1rQQAFHFFqHCpzgOLqDE8bAHmVlJPtreAwSH9s3kqPiduW9FhvWypEx+cSRJkCiYBJBxDpAbDhC3wwRCdQlcpgjDmXcXB6eg8kdovo9D6v9Xx/V3AAhBkQNk6wjzfHdCaQKL50FoAJ5uN7D/+MQBMn0NuH17mDQTPr7OUu8tkNP04+AODFdGoxImFcHgcAX2KaiBSMzNyy0bgEFNHh6tCYikZvDU1QOsSHMQtx4U2VAar0WhOid6fIYDJBVoLvOmu2ogLEKwYbVuA27BZORtmbfSVwNuHvehTQATA1E8OSK49aoQMWckgGg5QLioyi+jwSgA/QgO+yrAssaDdYcaMCnFMq9lF85ZMCxfgJol/XHBZUwNZLufQZgat909jRCueTCUkxjTcoBonzBjh8m/B9w+7jVY9ACbvVk8dfeDqFRUTQDL7C8HiHxOstO6aCu+lfVrecS9/PxRxeFf5MQzwfu4E8gNF490t8BMzHigfwBK3urQKt8HoZj3Op1VwzqOHXzi23WGTe+q4co1iOkqGKYeE8CxtlqNL4GEjlX6oWvtgehggzHr9HR5E9lYRPL+iS3HqnVVKzYKoymheuhB0gok+wy26Xs+XWA47hOHTRHpmgE2+sqrlnUQtaMrAIo8Z7KG1TJEBYfeovPIvofZ4aPyge0SAZ3rIpgxN+oYkqZAMRXBvgMUI6tAwOA6MDtVwF3owLpqKYAVHddOSz8sSZj8QY4TYXcHq35D5npOMhBn0a8WUOobWtWWQE4dB8YRsVEI2yZGY6MAi91jPg4sxo2Gg9Q6aDF1YTxInQHnw8WqLgqD8cBujeDXbxTK3bzzXxM27Xm/dQRfPH9UhPwVAAEG0yDYHQTBYHJv3gSCsVLiMgyCyYln5lFIzvX3a6rxUajdfGLRyETdE26SNSEYBIPHzyXCzP5+EITMBBD8tD/Du6/YQTtUK8JQuSnA5gMgdH5ihvarhGrzDAhM8yp4JjFXXDhcy3sHIzxOPc+kTcd5NSg8OzvP/E2njjlJmcmzQXlTNzhxqwyPA5MbTzQdAHoOa0x9v+FhBQJCeMUEo24QFM5ACL2ZnRMLXtGJOdqvBCHzSwvHDHMeUHcEk2EQTnrtev9w7SE0Lm3lrNVMQGH9dZFPtd3JUhYzgp8slG4lQNxj0quM1274MJQ2KplnuyregMmSW4Xs4X5UiV/eowjo4OIuES1/41bycPzymPEwHB1k6NSjm3cHeJr6ya3iLQdFBYSXdc9/hCXr//ZZrM79URGQf1NY+pqBRoq8gWf+xuZr5+7y183GZPJgBPpD0G95GxDh1z90LV7b/3W2TQdn38kGxyUo1PGgnPdHbH6KNApDArSDOPkQxkJBEHS5yo5rQjCjM9r1PcB93GoxqIG82alvOZOTWM5prS6HG5jSGvXmNCgWu/KgBDtaayZ2D/ohIfLXOfEEoWg7wiSFImiNPKVA/JGziMKsNuKdlAq1EttNNXcoOjWJtg4tCUeaOxsT1rISzbhWSJubtR3modHOmBSKZylOTm5W1KL1PjttOSh9q2fEXtov6ZebZdrPp8nZm2XQdv6KwZwD7SROPsJRLBAMTlCMxw7B16JRdULRuKeZU7i9WcC4/M7UDZndBXIWwJIHDsrApt62JVZfpoCS4wMIxF9ympeQZvjjguf8YJcHf7Be98iX89rX252Qv1JbiXxN0lyeft6MUpDf2TYEpXmQj6pZJb5EzhHM+wNAf4ytpShFNI5bLQi2nKDvOAfDYIwOescAj78H6+rzZfnDgJ5Y+n8UID/L1x/FBz6K1fKPx82fdsnSVLuBHT0I1P6zfBncNUOamnNw66Ygic/WeSxsaCWVclU8CoaVBwjhyS2nfoCTZX8TgDTNg/1hKh/iTPgf5IZ8AAPO3+OOYd3MkMiAgsVnNqtgUMQGke3zap5AO10dReINMLl4vHYNKmxygIjBpnn9f2cO8kNaca156tddYIqnv4yTVt3fL9DJSgeBX+MJg5A/veDPE6SIOrKQAELfAOI/I867yRHLjOj+T/sbwTdlB+tn4PUNIEoJICAU18WPNXT8y62a0G+TaepfSP3vg3ziv37J8+YP5BiGSBz9XtICzX96UwuTb6kpMOybQRBwFF6NYMjG1EscBEm74Pcq49qQTQYUD8BQ01ICU9wNJgDC45eH6EcdfP7FEiTcSa9dNwqk0qlWSqDM0r/EEevoaIdRqKwJ5LvtEgYh3+sb6h/2SAuQjmapgPxJcAH5MRb+kv5HMGcZFO4uvD3AsZe5HSpgLQXrJhgG42q0NzlWl0GkA2sYjI1xgCwLGTNS/KDo+MskSP+kAAKDNQl5e69NsVA07AQwNqQrzky0G4EitNWqb/GdHqXlRzmxFdek3yrXKslw9wD6jpR2ERQdFaGtQMIqnvZn0F7XW80U8/pmvd+qH80QBO3MOPOgzYpbAUhHUfmpPbrFUSfp1rugw7a6HLvvbtXU0Xite+B3+GrHnPdQXfCkKYaqbMy+DKofIZ5QEgv+MzZqKAqqzSOGR8axtCerRtGpVLguQBnOr0AJtszhsCcb+JgY+fNMj7bKMZyWpaaBcQm0+dNSKefoHmXYMQAPBlOg9C/2zoOpcSOK47+dXQZkIxt34xJjG4yDcQ2mV9N7PxhqgOOOkgA3yfefRJKxfc4lufQjw2NGXu3qFUn8Z4ve2+ekcbglqMQaACIbHBmq3PIjafK5QiKkeYCqnudKMC3ZOqlZYslJPCKBuoYGcRLJuuW7O5lBNuqqIfkmKJpViWb9VuF+gaplz8b4itRvrblQY63fq6hLFEz2I5/vYrrUFKgrG7dhrG+hrr2xC4YMRlk1snHE1vzB9nMBItnoc2b1dEjD7ss65u3QE3I4NjQ40J3erY87kMGoV3d4o7vYh9L6XIvBvj6CZCKhe7PeaOY/9yz7FzevvppDIpNJOtaNQm7CvABpE0jWhp7jvo+QVmk2oqxFjkHKQXs9HBmlQOZM/wxDnjKqcj3iWZpA2arCNKPNJi0xBRu1SoO3J8Lbt0hE0uAVGN4u2cd6DzJbcFsMSrN+Jwr0d9RuqUEXwkZ3wY3kQ1YgcBe6TZWGakRVv71giane8Nwt0pCZk6atySSTRWRVsQ3DTJkbE8Kw37DMujvNtHPKUmk3r8OSaF4Z+ZkB8pcI4/6Sz8hF5cZMl8tnE4TBQNJvnALi2UglMA+GEkN3tSxB9ERsnzdlNh5Jt9vtthn8Y93WW+qxmb+aXWsOGdTcBimsa63Xa5pi1f9PexCBwNbjRkADQDoh6XJ4BkL9cOn3pE80zvuPXaHJAjPe4OgdqQE50BuaK1fuQG3oXk8ZyVHC4xsw3W5BCHbCGUeGUt6TPtNgOaAn9mEl4HF0TmDbuxkNTY6ddgS2uuBhMZMPHI+d+Y2QPcZ1T/oYfjjdzAf2hKCrM+sZmbyDHp83O2SHZY/XmXkGiKB73uPMbsPx6s9S7myg7hKeuy1riNV/T3ejLvvom7w3PQ2PaSE41j2JcVjcHcgHbiOjfn8YSUb3ZK9hZv2hI+Qr0N/qmrzG9k7XA4fQ0+HwFP0DSIyQGE/AuDKzueFNz3XDRmbOmxgRPK4+euYl1x6P48zOxOgbv9cwMJ6p5PPazhLsekPZM03baBsaqjDR6XV0TFh4uNe9iR3s87rHewtje7eThk1JX9/onO1gG/fPt5J3bkPFJ8HuK8GHn5XMtdDjmkKIuTVyQz8bdYPkD5D4PWfF5mtfzgehvyWBTmhYb0ygo0yA+Ec1LfP9GzRvv+hJrJP6dqMcmcyTHPVcX7OY59CzFxHHCcFeaFZseCWpthQlr9WDmGt/sYHyGIGinHLsMds7YBsrMBY9Uu65TmxB/3JyvvW7eMlxAf1fLfac9jm3x9aHZ1kLzvDQWmKrbToSHp6Geb9dTn9zBa4NZXe+oys2IOxvv1l5Boh2k+Mo5mb9q4PBcqIIe9kecdM+ihnc24876D+v6XLHfD3iuD3OTVpSiYW5aa1w0b7bs9qavx0bCbo5TZc4ivYQ/ua7cqTTz2Nsc+mS/XyLfBsAV6dN7Xx7gERgu8mxk9AY+PpRTWU3YChYlvG2RVZbT8KDDA4/SLvrLS3Dc1NisS3Cct/Q4yVD/TATli2xaVajB9tJhrY0t8sa75daV7VkkjPXrDjtjZBsn1xIjgS17s3gwzZz67gTgVTyTWuBVFTBbG+FSHRVdU/OU+hLIoTjgdET3MsTiM8dXP/6TFEgfuvaxk1avpyNWv6hFGzfehUfA+Sydwrs0QxLHiRHacLRMajEZjnwoZj2gf8ITj1o2QVoaQ1zdodip7cGkLMOjPhtIZiOsWhlocwYdWPREukHOGyLwLgL+kNI8k/gdiwzNIAiUGSrE8XGKBOxMkLoG5yn3fDYx5IDQbw9hayvqo31lhhwIs3PWI57JL5JU+H8AbbsKVy25eDIhTv9iKLjgtu05OQChes7LnxIPOswkS6RP0KSfUM4moRy7yzeNXBnKzDWdjlmVLpj/ciq4mRvgU2D/UOv21z8Mcx4GG5BcTWKohSdcAfDSEIDVNpmUIZFSiA522AqXYDBxAQst04gZNW7YyxYQNG5TzIahpbYMiu6FJztYMuuIoV3l1RCQUtihuIkkly0Z6rXAIhnm40OhfhCP0p8Dn1xAEEFmpJ4Kq6G+JDVkDgHyHwdcobSXlIBFPHEGP0dVYCE3sCDTk+r1+l0tq3h30GxFrM/T4M7M9gYN9izWfbnkUJxcodEZrfJliEenBVs+6C4hWZ6varQMoFYyOlvKzK6jmbMhi5jUyg6T1j62ukM6TGx4zLjGteQ1enLmzmXNzrI5gka4yHssTKKkQ7TiNEd3Lqpq0Vw6qPbcYjix0kTIK7oz6paf+RuHw3nKsIeKJFNGPoPWPMgOQxOCcc1RNrMm4zPBG1IrCGWkVbGpfdG2N9AURpO0rGKYjvIagdKMVRE4Y6FVTqHYuuMsC6FYvQAzt/6/G175IKXsGLcljeaQ1izf0klYTeA5ieSnQV7NsyjwyaZz2DTZ5CGpVWAVBjdR6EF1+xRAyDebezzsfeXX+pnu9+nLw8gzWmgqwB5zCqhyA/Qn58tRCITfAghiSemyNQAcmQBJLacLER6NPw/oLFgAASBAZAjNN6EJn5mNzflUVLx/i1KSMcSjhJcxmbh1ADIHQrXOkI5l/G8+Vlhzs58BsXIHPHYBIqzE069PZFIpId1H1JoiQ/PCzhvnWu5Su+g4RmkDIB0xeJoFGsA6dYHIW7oeujA7Sij8d2cCZD8esugoeq7TRSBcbB7SjiOf7Y46SblNAEygX4LkWAl+XOtsQ8Dio6iCc6tUCq33BthxEDmYbSHDuOOT7MsTiIlPkNqd3BBJQZRvD8h7MGyaKF3p9zd+SM9wUNIZSM/05SsAkQpzmMmQFz1sOQPVYC49UMEARMgRk9T4WcpSmiJVFc0iVT6EpLSRd/tF+r48Rn0pQEEgW3T/10P4uNJ+uBwCbqGd1hLuzEXr0yApC2ANA6xpF5Ni3kyh6K/146yktTNHaFYSNhN9sW0ec2BjqDUVxB6CQ6Ds7D9DJCOfoQKLXB2hzTYz3asYUpXbwohHU9cxpKmqPugBjPtK0glENij57DSV2BzwwCIH+FYReIaeh5iub2DcBlsMcFoi40j0fu5yUqeRi1VG3sonItgDxzi20MKZBUgiQkcjwjluEUiyA3HrZGnFLQMl2GtL8ee11yhkPjmUWx1MD6ElGz6kSwPt9iGHxAyccRCAMOiHb4bQuIcMUP5ScYOEQBIRvLmGtxwGEn+iojebYUlrzmUNcTyHmImT0/FbBBujzMQQFLumxobjkCy7QYpJJv5fwggX+Y8458DyKcDlhRPPph3ls/vvskgXM7zy/F7rr1IysNjfGhbmWE1D54D2E0LVtt2S487injfQeFYj2pl/wRCSHzmYNvnWb5cXMKePSmEt1HerVLYu4EtcQjx1gk4zsPIFhqhIkJ5w8TbNkvL/TmG+tF4moSr9HJ58+sfYSu9cri7ixaYL6WGvnrkzahpt+d9Yds/fMjFCRpvPDAe/XDZ32oCxJDSnSgZumZh14/b4d1NdSZmue2V5Pp+PKz0l9jaR6G/AbsjzkJ7fyncP8UHHcnlcA+uztIhR22npdsDyZZnprLx1bqJIf0kchqKFlhvv1o5aluE0eFMeLNtgTcuo92evhhMpYu0JALHKZ/DTjiLZdF4X3hmv+0KmR4pRXjqXSs9rCKEIBctRh5vWQ+GSxfpKSIxAyDRMLm26bI0J+mXCPRFZqNXuduOr8t0O+4GVxz7SO9oJDX/zT2704crnoHPB4gwqMkR5rOzPFjczQyfM2OvczZJ+NIAUsul0diDHO2B7Sngup++B/uTI+C/Z/kdkkJnF3LPMyrW9uFuCVLvERwH9NAIgrA/dFcpcpC2ntGeGWXmHnF4/NuQnNP1AZi6C7jeSLSzHESG7JDah8UMiotdhHp3CZUOh3NujOIDiqMiQgwE8tNL0whtQPeEVmFszjkZ3jnHtYVEcDkZGi3v5BjfQXF9h+Ao4N9JHZhGFE+xnSXruuye243QSQHOR4UgPulwDkXIjKN4ew3ukxyE8w7nWReVt0hynbPEfZ5pxLRHD22Cth9wbe9uW7G9vtB8OZNkf+PU7zpG4vthJzS0AtdXSCFIbgVcq4IJ79rb0LskxLewLFIDTv/u4zGk8s4UKqN7Qz8gMAzq0L3jyGln6G0OpuZtYJuLw7jTNdF/bD42wdtHmHE5fecDBeh5G3CNC0GkM+BK7SxwH8r7dyTi8x3e/3ROZgF17mbHmM/U22zAlweQX/XKRTwXlGpoFp+4UmqNcbVWjCnU2au/koYo2d+yRpOIX7ekKoPuRAVpnX5u+g6BW498FEKsJOKX+j8VEiy1TwUZm5O4C6SpteMY2WivECBpcUw1b9QpmkQrEM+3aFWLZlWNJJpWWs3TJgXizzhJC1JlfiuH1w+HiE+zN9X+wWDuOsuXB5BPm29tQmwVGvIE1rLmNSeelOaJ0cb6FA0vuZ5HHlE/rQr4xRbrljxqCusGCBpEGX+MrZu2WqfiEwxWZaMuidtRQFaNFc2q6l6zzTdcu8ma7Jpiyf6TlQOZjl2UFNDQLgWz2R5TZfMzsSytPxL4uN0y56NnLhotleIXD6XG+7n4IDmSD/ivumsRx6E9lFGuJYqgIUuFJPZQix8WJp58Af/oJVLUk1ooko6CVWMZWo8yfrbL4L7vdDon12D2KuTM/6CoNr0EgEB9bFh7a7U669CcA1bQwFI7gxp77SJLKM0AqR/q/waftOTjCoCazmYGq/FjXW5PxPj5yPLf0t/87awuu46xzSukWR46rTuMAVWWFs9UgwYahDSKbuz+GjqGJoZGI2vNNbk1z8nP37UhOnRbnr6y1d6Qrx9llT+R1AD0JWStRbIc/WHmw0WZj/K0Yj9oqdd8qosQ8DScWQ6P3DKW8F9fbjt88gX1IH/RIP6NEJF6vsI/ymSXf3tUhc1GFX0K8SmVX+xXZpl+quJPXo/055B0rKPk49V6AcFYl3a/wuzD5nrE2iPgoNu7jRSpzYESAqG4O7PedmEmub43Y7DYbUthJiT2Hpk6LhhspYPFte0w2vZI/4q0ACfZbc8hjMKoHyHQghnkS+lBhPhn/sWF+OsMNQfc/1t4+H9Ckse+CZQ5jurU986CFUz31DPH3lYsDHs/vneu0+8fmOtNQnF4ZMM3fA136c13vdY+9wO6QijFbmL+6V3bNGw+vXfuaOkcN86tybm+XdhOZ9bbQjd05ovznbbnoYVzHyWloqXvFiUUA15e0hDr76dq//uXGeotf9WMf2z7MJqbv1g/Jcm6Xo1r2HUoQSYEHQOcJtxw5BEMfL2CEEoKXOsM9pXh/tsb1mItcOyQCIHdmVjtQrLUVoDVmI3i12HocuRY+flKjtICxxGsjzI4XP/XFGjD5lBNEm8vWMEHbfYXAxAhWDCspnFW2ByT9FEbvwgToqmycSGmOSCqXqBRS3NgkEWoR7sl+fyyvpjzBTvLfcmkqh8mkYxeoZEcLhkAef8dGrPRCiOTVtKXVDh0ZW1cPjW8xI9nKGujZQTdO/pwRrEbQjE7vMzFEBK7I8eNrgTl4Cz6NfzgRE76VzQEAivVZNgCSMVM1C4Jt7e8GIAgCA2gzNUQ81BbWqmtnXy0ziNrZYuhvmqFWS+NKtC23dZlWNx1INUKNbmWlqWJxrBDS675FtRSi8S3gXxWLF9HXH+GJP169c26MqZ/WxjXgBUOpiVuebpAoTacc/PDA2TyCET2lNEnJNJxSvWp37ePs9qBxJb4wMYIyuxBrkPmnvyz9Hturx3TiO6i7llDWExadAmJkJTaBpFIHvpsLwYgQmBTlpjGNRVV/V+tfyloaJXKLHycp1J9VJlzKcRH3zlqbFah3mKx2YwIh1+OZWySrrwdNFVjFEjtFR9/BiArX1+ilJB0jKDRE40bPcjQOzS6epd52kex47BLOkcYd6JwB7fZGkXDFkshEQhNo5hn18qsVGHjygLIc9KKFrpCoxvX1ks66ht8XlX0dyKVFNiiP6CUZN6FeEEA2Q2zcn095HtU65Ody2C/uJ3U/WHITSdPJqc49XsDD6jiJZJyUYp1j342gXs8/mPHiFqZ78gocF949B9tjC3OvPWdFJjd6t0sWkFray6v50hQGlny675BeFxf9OhbXWamA29gFQrTufedyb2+/ZGW5JYG2rtDVis7Q5NLIDOz2o/DI1fu2w8IOeDR37eg+p2ewO6rB+sfJQF+jw2BYjdmx5wp+9bZjk7AQVaxP4LibSeU2tc5bKvA0vc3pvcZq0ErPNNcGX7H9lfLMBDUuNhEYdeTVtKKcnaW/vdIK9YTLZYSqapn3ze7Br8i015C8tgeRgLwEgAi6ejnzddX4YOoq7j8FJ2gO5ZfGNtr7WEmNpm5JdW3PXUbvWHyPYqzSYp6uRDqxB7zP6w49bPr6+EMbLkG44kRBtt8u2Gfh5752EB/N8LwrBsfC8cWuWx/X06OOhRL3xQHB71zsNw3PZXqfWAhNpRJ9VwMbxbtM61u6I6u0BHrX9lpW8AWO3S/ixaLcmsf9jzxwcAcb7yDudPzV4D8URKCWVf0/UXHE+Kt92LIMQPOTcST42kuuwDv7lAsDM+fzOWLkOn9bn40uw2b2R9H0ykMbOw7NzacziQP6bk5VzQFJxsouqIRtnUU560TrA0P+eZ3mfDP/xgY4rTVjTCj8VtDTyehc8RmdO7JFx1HvJweRDL6A+NpTTA5hFCOD9gT91ZwyGX7NWZeKUUmRDjRjT22ILJxKPRFZPAYlr+OQH8Hg+kWSPWqntYVSEbjfPCAtcnYBopTB6VoCWy995ymbXDZV6DzCsWql3j7BySlrB0qwWqaHd97JJMj2LyXVBw2wXdFZrMlKPXZ3zgRrzFCfzJ/ztrA5lEZSar/oQvByiWScP/xLJKZMkJwebQ4O1YwmnZObYdTSM77p8dMZpKLI+vXNsH0pNjdTVZZUDc2elIIuq6l/W1xcXE9usrC0ZsbjYu55918k+Mj/UvdSOKZvekcL8jVREjmDjiYRGN0BIXrFrujhOLtHDNZtxAyu4YiHHXjeGBaZ7DN5fO5vqqYQKkk7IJdHx/afb7JUPtsMt0FLelzlnTNmqA5p1EM9k0UHDYkoXWm82ZgUQp9G8MnuDvu0IRiJjglqMTcmLuUuRbR2NrApl8STndJ7vYot5uKy3QG9yO8zkL+MInmmSOf/Ij+6e1bRE2GZHcSWa+rk2TAhZS82zDbBWae4OYUFgLxknyxLIDszBkAuUDiusHuuESxMUfFK0AFUygqvS0UJ8kPUO69Tq2lljWbIwIzMTtM+7hOrKRSqQoFhwZdiQrXetXR0LuLIhcdK2TdSPJVgNgSKdJLZmSevezFDM6aqPYg9sQCrmMU73/EpsdZTtuFAZDz3tufFZ/bkOH3w6evMUJ/KbWm9cNHZdmYTULIxgJC1Lgl435Ujb0h+4NiIbhzf3Ohl5Am+6WyQNao2Pr9cr15PzXEegbIvgWQ7uADkkDRBIjAs4NiXIdBveIYpCUdt3br0Q2ABO2wO0k80WVWFnQDIOkK995nZ98nFI+9otAXB1t0idNYN1y2FgjtWRGrFQ9IyukuOI+54bLtnI4HFFs/mkOshawb7or0JAZroUaL2RcYzfNFUM2V63edHkRzocosWPgB8WnZzFxs3WV6aPDLq7N+WtsLAEjnDplONDp/ROK/xZ4OLOdG+nJUHALJdd+CthCdRjGfnUNyEYx3x6/pTkegErV6ECadue7zDwymNWiJnRNvq9htCMl567UWT69Tap+LD3bqNq6/GSmUvXOw0vpBmwkesKCbN9Z677Z1tR7Iwflvz8nvGuq+w5aNk2xbs/NuE75LHBqKK2v2lneu10n6l0iiaSQnePlpoAXvFhl/h+KuiGQuRZdnsVPPL8Oly9o90+NxTmN6CNwiUSNB3fEWdz4J8YAdtrfA/j6oZ4sU8hrYnXHEfjoUMZ/QjdMb2JGUPdN5x1AEjl3jAf1dN4L7gCfwRjDTYVqRSXuWufF6Ag/vZhi9R/G0h+YahIG0JzfQj1QXPyu+I+UIeDuTrx3Iv0Wfv9t5wxCKz6OXARApkRJRO3Q7cihEPROaZheIhiTC3TllnoBQz7EftCQl1CqrHw7Ngl0gietCKHOG14GS1FoMLWCeacKoMttqg2JptZhlgd1QjNTU66f0V/qvnBWt2YWoRVzQ4BLyUYrOBmpem6ie17klca8JGMlxB/JjV5M6Qx2VzaKfCy9tq79X+m16AQCp/WPWDvZEhIZ4HZrS3ZqnTVGCv1YJVFvKWatrYDqPrEdC1bU88zcoE/zSz/HVV/GV/useRA4qxN8tVCtUZ272LzT/4yv9D+ilxIO80it9Dr1IgFQnE/+M0P9d6thX+qLotQd5pVd6BcgrvdIrQF7plV4B8kqv9Bv0CpBXeqXfoFeAvNJP7N0hy8JQGIbh92Hlg08MYtFgUAyKYhOtBv+BwrLZ4v8PKucgcpAHtuTkvoqHuYWFe/F9YRAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYBAIYHxRIHqIZiSxhwOd0jIQ5T7UbFB+Gn/IEBJ0RutAGu7izzcP/ivqQIe0DURx6Y+3ITXo47DfrKfD0XlOI79CoSRUKK5EfPyvmBCblbv1i5mx9rv8HYFIMVtO6tVrIZBUVc9DFvn8ehU9nBb19W/Xq2/HtKA8PfK2ISj95OvpwEy4O3vn4txEEcfx76+7THtJSjVQRPowtk01tEohRQshFg0VCogtyOOKaBB1ihDFyN3lLq/LJdc82/RP9ja5lpqpjxl1PGfynTa7m/3dTpu5z/x+v83urad1+MEd3fZhEUdvy7XstcYfHOdG+BN5AxCGq8lTS8c4eh+k3hOAuW+J8nEq8tHT8ZkHVxcZ6IAF3OKQj7T/1ERvi0DgBStbCBIgxeLBoESUFaoGAV+2KysRLCRA8IWCQR8nFp7mIIScnmUOIoQtKwSiqmte5dNhBiK2nM0WZkAIildRxEEUt6xqTPK6ByEivJZ6dCYpfAFh4Sc/zt17JMG3+WTt/o93rm6CEL9z4fHVMFxAGGYjkRegPVp8N99GcP2Xc2BY2Lh7Yd0vuta/GIMYbnGDgy/EIK0+G+8/dt3LIkzvKJqmKlVUSrqjnI2comqaUrJQzaiaoqjqbs3ObAG1vNNfyltcVwtOKyeu22EANVStCaKS4VgrWsZcVpQEkNjSVWeYJodtlH1gqGTK4HVdM9RM2+uAgOHtwETwbPoxGHG8GJi9FE0P0vRIavBkNBqJXCQ8e0dOp+WlO3uhIy6m3vCBMe6IEcbTH40flQcug+aGHMPUe6vgeH3gAjjDs4GlIBYmz5wfluWhb/39k9E8KwJraLmtYjFfDepKzsybegV5pVHcyqsmj5eLWzm9UWxYFQeQaaVr4ACiFFBVFbNYLJc5ENZLeoOB2ltFUzeL5fqyoifAyppeLpqKVoGtqk0BiFGGbehb9e1G0+uAEMPZ9Bo+jUwdEfW7yRPRY98/wcX0ih+bpwdvEs4PRT/cHFubjKyCASDMvJs8C7Yfgi1Ehk8G1r76BA+TgVvXf34tNRUH3kw7Jgybyfd8+GBwafDU2YtD8q3+4bOeFaGq6DaIJBTUXDYY8vs5N7UsUBUUEKS8VgVDzQHEUvOFoH/GT8Gc01XXGn4QcSLUjHpDmQYRoZ6pg6EDSKEzsLStNmBrOb2ADiB1oy4MmccBIULwuLwO34jzwhgeRyfvMkJianIWDB/KN4Av5VEGcupvCmsQxieS14TjWf/u2cPzwEIgMvUABP5G6gIYEsPyZ8CHXUCeylMOIEvRFTDcn5zonx3oWREq2o4EInIAKQVBIHQAIZ+pWWDwCUB4FxDN5B2DmZw6jbLRgnv6XtGoNjM1ELEOIFwAEncGbkhgyCp5bmklpSGJEMsxaIH9SWLqBUAYbkaH/cCGfAXEcVce8YEjdjKyCglfyXOYOZ66BM5xOfrWMlxAUpvgWBlIJ9PfdgBZFwYPBgOfivKxfIbw0UFATkeuQ0JsKiq46suLIkIzUwR1AcnVbLtShSQAwXJJqfZ4EM2MhyTOBCBhMg3bncqJ6zluG1u/9SBxd2DhSIJWptzMtDqANLWdim3HQJ73IF+mRu7N//I8cHoBHBfSFztcn0gvAgtTyTHEl6KzYAxfRwLjXUDCE8mH4Lj2/Oyx1F0BSOCcMBiLLoU7c2LyUd4DSOA8iHAifb8PiEdFhFb3Pu4AkslkdrccJpR6pbalmlJviJXL5fJKEyHhQXY6gAAE29h23nKQOBSQmK6GrExD2lEStgNIQdGMjCaCLy97ECIsvxNIpR0Forf3ASGsngycubIkvyAkJrqAvB0ZcgGRhh0umGDhYtoFRDQ+dQG5Iw/zTojFGb5L7QHCCGfSt/uAeFUMtQMepF6rtSyHCd3YNRQzC+oFJJ83860DgAhh22hJR8papQcQl7ywrvitzA6yxrbIQVBob2+byg73dIhFDDeSU79curRx+c3kKc72ACG8DLwxfGWdE3zHUg45HD/uhViEteTRBBiXDgJCOHc6MisMn+yFWBLHvAvI1+BOrCbf6wPiVTHUjDIjInYwB1Fbhbq2DaLeEGvG5yPCTBeQWveWCZV0XVF0pdgDSGdghqqSkyyj4XSpO0rDdVa6HvIyIESEUfkxxN//yZBzG3cBAcM1ebGbeTE8l0/4QLjiJulg+Hky8i31eBACOyX/AIYjx0SSviKPgiCNTHaT9A1wfBoIXO8D4lURskquAAIJQPyvkvSYmMR6BUhvkl5AW9tinZatlkxzx9RLIbCDs1juwHVtB7YAJGgqe4DEc94GBIRvliJj4MzRidTnwBN5pYPLPXn0xqWNO6tSJyd/7drTK5OOHXOh+iI5+frGT083jskvgYWhoQ9AJLiZXPvp0YnUyTBwNTX0fPbHkcjgSQFIZGLWf+5M8rjUn8Xyqgi+vGI2W612PKzmtlvNVrNKppoF2ka9A4ipdgAxirBUERgJD1Jy4LE1favVajZRN9osKCVM1d4HJK47gPhM1Rm4nTOajm2DCJail2HXW61WWTUlLwNCDHcHjrpn+M8NnA7j+4FRMBBi78ppR5OjfmDsqFOX37mGV+eX317qdEeTXwDnZPlB18femBBfFB4/Dwa+Mun0v7X+zqADyNC7r8sTATkw2/8exLMigq2rmYyxa2HHMESW3oKeyQIFVQmDIOWcBkNrtwFrN9f1IH41UwBvK8K8FCplbIhMZLcIhvZuGwwxQ0sA2ZIYWCkGUdk1CYT6rol2xsh4Pkkn4PLnm+7qqdji4jh+vrAu6uOnJm7Nzc89f0ueE9nDw/m5R8s4uCbt/UsvXr5cvPOJBBz5bPGIm5yEN+Zvb3bjVzZ7e/5yCNdvciwMLr1/f2RkZRX9HVaeFRFh2a7V7KwPoVq9WatV4tRsx0BUa2dBYJbtB6HQtLHcqjCQgKbW8oNYtVKrWNNB2/Z1bgLbYkChUgAh2Kr5QAhZjkWVOX3NCol2y8YRq9KqVZa9Ps17YH3lvjERVtKPwIRXkb/cX5h7cP0iAx0y0J6hqB/4WXBnsYj6S008LCJCzzrbnmavevuJDjEnd+DDF/KSt78oJALjTBQgEOduE/yN6CoYEX5IL4qScZeSrkSVdUXoXidKvDIUtDh1YdYB5GMwUH9/lZflblcgEpVO9cC+DdB+wcRvt4qO0f513UuxV9k3ILgGov1qkP/LfpBDM5Mn6ePXPh67PCq/97urQ/7qP0dYWBo6j/52kP+RyNFvCvwr+vNxvQkICL5bQ7KckofWxvF372vCB5HkJ/353b7+c/1jHgREFJt9Nraa+AdcICF0e3657z36+s/1DwDSu/uy/9SSX9k7E562jigKf1d3EBjvGNtgcMAsxhgvmOCw72EJmDUJIUCgbGFJlYaG/6+2tokdQqvWSdu84CPxeB7fJyRGZ+7M3DPnVfHj4BsRpLQK/ybrBkG0yrMqvgNUnRWrqOJby92RPP5BweQuhKp/XBVWQOUEUdX7i0N3A5Hvdg+viiq+OUHup4TwjwgiTJ0Z5G401axSxfeFSgiiLIwOTe4nskVOlDnhIXdkBINHdz2y8vfKWW8DAqXKKyBSdfn5IVAURWipAo4ateS+S2UEWewdzNwEHJM13Noporx6hhY/fVJq1XQ4Wrm1rFa5DRcl19NQbMi3FXQF6+3VHPID4K7WqnBrTRvAygiyEgPhuMlDSVNG8hL9vCSi7Ho866iAYEyZ8ky5Hm4o5Zbb8vlwdRPNyhDkVmnF4Yv9o/d2hLnxekTYfvt2bcVuve6tkCAdoqrs9ObAPr7v2XhG56QjGFxHckf+oUW9nXm5P142KcLVdcLdOJ9C6eyb93zoh+u4tAzZEez+Q84OvAfbsuCsC/jeVM9/WAWC3BFbixQbdT989epDaADD87zIG5c3ceJ0jVmOIZUSBESU0CnMTm5fHDj6G/biq7lDzOnI2XZvoqhUz9am6sMXKI21I7PPkmmUzebps0DMzi/Dpqb3PYZphy42LZ6N7GvnYHzzrLW6lWURlBac5Z7m0RYbysumuVv+TDZ7EMG9h9J4ZDl93dcR5MBdZIIzgX04iiKC0ucsrsTXhuDnSZTGEEqudyofTkPtNRfDdq7SKIFT3DcoKC1xC+bghwvBPOlCkDJL86Tf555iqvYSoyqitDi7XTMovkUauPI/MILMu1G6N7d2e7aYG85hhPro9viku2hR3ZY5jmzHOyH5AhuRuhTKk+dbfbU5Loa7mKkbYKB2gZXeox1EicbbqR4AsQqE1kA8GUWkLIF0Q3CV61o78geUjSsO1lB8e4jpSDwoggjufehrenozUvuK9uEohlln+mrdHSrw582jjra25KNX4HyF4bg2hXkbOz9aq/uDIA3gXifjRPglHfdmqWYQK0GE0de1j531SPmcq102NnjeZhAQocZ1zIKrC9z+vjXXpPUcOComiKoh8niT5Z+iKI2JPEFUOjYwbDkL/Elf0dXFiRNceYLUtfLRkYKG+HWBIIsuGvtQFZ54w2Msx+3VDGIViOBzxGt7OpFSy5LfG6p7yVK4nkICef54qHny8RmEQjeZCwt27tds87a2pQ3TtQaOH21TE7+GBscZSsANIuzUZlHhSd2zQgbZqW3lbRDD0uNlLsINMJfciqUQQbA/ekeutt16/8EHC2X9de9rvyCfGqLhd1PsnxJxLFAoDAbW9nbfz/vBt4c+nDrI4qPBwUyzw2OHJ3UfZnf9w31o0P0sit/VcnnuCoEoVz5ERPH66UnwR8Lp57L31eFqOn7JO0cDyvrjA5TE6kKuOTZBp+NmYba6i2URCA3rgdOyY23KiB8V5xEE3IogzHa0o6TadvBNYx5OJb1l0u8fOlpWEWE54H6azeVgoNn1krl9n3cxtSsIJKKIiNCS4cMZSufoBDwPhk5TexFmzm0o2Z/eYVjyBtM3KZRf0s7pKkGsgruGJMpF3fabjaYP0O1y7l6+Wmf0AKMGzz4d45Zbn38TsSIiyP2vFCz38blPg4AY3nfUI8XnLalEeMAQ7ii6Rdh8OhqN/ILSkPCnh16Zkyz5QTTDYtaafVuh3F3zEERQERUREEXzF5Xbb5BCNFru/qK3N0jsBSqoFr5Dq2JFa0Hk3hEzf/kx3sRaAUHuyyOUdLl/1zNMWbjxBeopGSJRNYmzNEpK1E/6U731wrKsU8H/d+RWiLzca6iqd39MCD/IZOB/IoiF9c9VPChUTpCqc0kVDwBfY9pwN/SfPCgFfEYXyj+WByIAnz0nfBlbCi7cV08oVvE/EKRyXxJBSmcIKVzkTyMpRAuUvIv/MrYQnA/T2z/yo8yEq/i7+B4IIthq5ubs/3QFUYivmbAVlL5T9vLnhYk9RMpi7VMGQahJqQiiGM03z83N1dzJINzGmlY7ZbE0jNmquwCVo/K1eeFSuoplfcgrq6Rv1TW6XIE9RBAt2dmXzp2LaFk7AuTvx4NOZ+wFdM8nfU7PDGVlw5lGpESXSHPQ53qDyAtXo3sWEaKuHEoqnHTFQuaz2djO02DQ9RwlG2pMnihCi+sSFfpcQee76tbxf4nySW3Jq0Osu4NfCUEMLzwNU61bjvXSeFH+U14u+vz4/lF4c6Irl6M95o/UT53EZxD5RAnvpw8oexk70/FWdtu6WY3Vo4O+nvcYDl3dE1NzgpTR9c16O3u1T6iPrdLasY0mfD0rGJaGj8n1LFhT4mBJiGDynTNhR5AJg2DGFFtkttU8pAzyYghRDh1ZmBrxrPVDtj+beTGLLnUiTCzZaBn1f7TBzsBcZpdioT3au4Mgyogz/+sqVEaQbPpuXRbnGxq3UXzvGTuf80xjuAzd57Ul4FthM2aE9z7azyeGxjF4VzFknlp17Pru8WWtQ5Tnw2MoJ80oEcc0hjdBdoJOd8xvTYZUTBBVJbBGjfPgYihWw5FrfvCqLop3DcOgj3fhrfc9N5Dwjm4s3hLkfAgjooKrDyPKs9oU9xJEEBXqmw7rw7MY5m9QJU+QxUnk8z2qQqwtds3RJIbjtjEMQ+MowT3quWjEkh3z/UOQuwJ2EXk6vIXhrM0mfPzpHGV+g+AIjM1YcxFSeQYR5SjN4AFKKMFIhxHeNnOWNOB6ju8ajsP97PZGEAEQIbiOCkJ97TtUhDHHAnp/BhExrLpJ9aQwHDWjBn+eIGGPz5u7m2sMfUHldB/DWM8ANprHMZyPonwIW7NjLIAv5anKcuh9EKGm7Rl4RnxjmOQSw7MYq/bCVxFkzYs/lDjpC4/y8xX19HmxxS5ZbrNNxdcGMyc/5Uj4MYoAIjT2FU0b4lFUhAlHy58QRFByTa209nRi8glb8U+j2A9bWxN1h6gwFznuFwRBaWnrp0CQubbjQgYxDMRGVzc8Iat2zfcOoSETOO1GKCPI+Q3JKEo6QX9sLDBNpKebgKfBsmbllU+xREn/TMCTyGRWl/l5HUPCAyNPOd9gID4ymBl81cnqBlosaAjetxgRQdtWMChZx879BBGUZ8lDmGvKYth/e0sQEUTZH0WVlTbXkEEEZSa5UOCRob8tVZxiCVPbJ9lxT3UN8q9AlMxrx2sPCADFI+gRXoxiGAyw4mb9KbtB6HaH3+5YdL/9qxbpj1poHkQRZe2WIBFXt3OZidgAgmiRIAKI0ldrR0WE5jSiSiYpf7IGEZ65ZlHBt4LBvf2JIIgaXo7m74wpikVnXAuosukS5SJmMDSPo4iIEOqrOtH9KxC+OJOuTIcvo4nhKVhoY36dlg4OjlA0OuRYteZAVTFBTNdZ3RVc1s0gqZoCQfo8KEPNaSOMhmzY+g2JDQz1u/0Igj3pbYeuGnbqMiIsOc7Q+wgiwoxzAZsa+hptLIXHkCJB+rsgEr9Ey7gUcUaxqdLVsYdxj6BaJIhiO0l2WXLg+v7xhauJiOBxekOe+Dh0uX4JHmJrvHZfoCrChePYkh1RWR1k8JG70ZXcUoTVcCAQm+V0BBurXgx7v37E0O7t8Db6lcEDDNnHAwgI3Z5wIN0xDTO+pNf3+43wJwRxOwJOX+wc3Y95e56jKN4VDCNJb6AngZTvYqV7f49NzkNLR8DltefJtI3S1Rxwe1ot2S1WgNAfCrtayqtXM03tKONBhIOhtE1Ym/RNISBC8p0lC1KVSU1qItmZARsiCKnN5U5lbCKvCkGw7eS/0MPNmXaY60YZDxVCRXRg6WKnHsHMLs12IQL3EQRJRWay2ZkniB4uTyCI0GlHMNmzwyk+Vzl2HhdjGcsdGwShsx1BZltaq68c+fcg2LrtZWOc8nYDo9T0tMDi65cYcj81Q020HdtWmzWNyb9SrFgsSdwvraUA5XQRlTLXdynXH96tpJfjc4ku5c/91Rn56oGT39g7E79EbiiOf9OMH24EFUTkBkUEQUUUD7xv1HorHitadz1xV+v//+kyg4L03nZbt/XtykySl7zA5JeXZN5L/gn6+YYDJusSUkjOr6HX3IkkEt2FCXeo2eI++f/MQQSqW/mzHZp2+6L5CrRoLapJKV+hyq2ZcL3QIFOtNRqEcvkqAp8zPCsh+RID4plXIGp4v2kTuW+C6t6kCxSTFqWYQEQkQnv0yN6piW9Vlf8jDlN/oJkKkolvs4t5o/oH/eLAsepw4dt8vP8AQATfaOfxRn+KxPO/CkoqoW/bce21nJP+Nlt4o1dJrwUgb0dAv9GrpK8KEPFruyFV5/Pq9U858mp5/6zMehvUv1NpVWv91xmrTG8q+VXQ1wCI1gZ/PbHqiAlCilcxqKvU6Mua3m8X8lX8Wf9kJau7utV6gX6bBzP/Hr1+gNQU3t6P+OWxlEBgWu6te0CCwKWC+O2RWG8Y8RvJK7+RDAJP55MGUaqiNLh+GT6EwDifq2D+9/JODf4OkxCY5k3U8/zZjTyr365+o+Tn7Q5rPsTfN2J4PglcE1QrUGopNWCVtaB9lXj9WwBS98glnRtoZoXOPiSVo4GfO0CDkByfQtDSeHF8W45+/pEUprNa49DCsrrVD1pYCBzbKFrwRUolBz1bSACqXaVKTxIOWjTdhUzZ1CTtOUqTojK8yPBcAzQuqcYaIpryq5Z5XFhGfeAR5QU3QpPwVEk8vj5kJYzKU2V6Li1RHNRuteQnwVrxL8RXMlZlPF+RdntNsQiU+9OLgwhCEpi8HupEGPNz2x7EV9B7dfBD1KXU625e73jwrwNEUK+qFR7VlofElkC+9FgXeLaRHO/A7DVcnVcTNMt1lwnx89+ZapNivA9ZdSqsKV4Ltdwha2r3UnzV8EVgHNlFPEffzWpN+klkvXd9VSDv8lojf27F3OpMCCSX49RXuvZOsliYR6kqUSHquKVq8met6+O1q+TeIagTXy/juXcxzP2IqH4BZtzmxq6HNSQ3WZet+YpwS9ad7jH9bfoDIdhrh7x93DE31gT9F5rbj+f6WBXSMOtwOD4tIQSjw7ahtRMiFw5H255JjUm02d4dvr4jqP4yQGqaZ83RQ7NIAjdX2FZRmFjsNIJioCNjRLLhqDSM5j2DtjevsrzRQTkqsxXO+KsapONqYxSBURiCYXXo0XnXj2R8gGkjgkhGVkBD5PJ9QP2ZjztpOXzWIMb2uymhDjY8Z5rrSPuhMd+o1ZjIhEKugeR0A4Kwf6i/F5SzjAkhwk30nrE/Y7xfnEGQmyBXFtk7nUNwl144C0BgelAixOerR1jU3pqcNbXfz2gDHVMKsn8qUJYSZmYqqTbZYJBbXQN0nAwaKs15YioYQdBhoneqLJjcyYSp+whZblBn4uxz/VX7tumkEMxYnPv9L8RjTArD1ISSxDTVqwKudzqplK9ERhVyMySnZ9C+7UA/RovVwE1poFw6KVeOfGEZhd7xDsQX9YyKfOlQ2LIJF82Lk4noHNw82DWXh8KR1jOa44cL1+ZbiallZONwbosZ/cDxnqXVCCde28LN6afXp0f+Bg0iOInXnj6nuS7R7ko5LqxxuAmNt7ROsPxu2+3s6qTT720d5/hC7kRbxzMrKcg5G23ZRYQ497fZ5qyB593fLQ5HdBlxvuqwdZ1LRp2pWe+P4OjDmlfdT+YtbmfzNQStdqcrAxtRm209dIys4GO8ccQ/DPnbNWdr8yAE7Na2IYdd66vp0ydxzJ7rYv52VrrN3nSC9ha92b/ERGjsXWFHuhz2bMGSA8eHuM+iJG16s36S05iuW9dPPKuPjRvh0KvXretXkZKl6OdCtmne3i7aybj15uw9xJv7omb9AUy1mM1DVjumI53OZ9da8YVOZ7b0Ihs/zOpiln7Enk6fPfLdIYVkwHvRFSuOwbK3W68f4KRcfN+q71n8UBN5y0ZPMXgVGgiZzX0waNfrfDuIcm69h6G2D+q3k1T6Ee8FM7ofkEhWSlfQWXiPwpgLxF93uRUS5wGcr6EwqAtynGpeRtJks2kASbo6kPTrd5ls0eoTcO1DJDtJwNv3Stf5/7oGkRz60qUEQrwAiNKTgKvSLrmudrB9oL20aeB7C8qwc9RD3obRvQeHVsHFLWy5TGxFZ1DsmgZRFcao4Ac7OHuSojd7gzEsufIbcWyTcCJoWWAwmXTFwT0Gw24asncwVrp6AogMKwSzScaK7xU51Aaf3IIJv63yVBstmFzmRDL/sIZypJ+aYdr3LjClb6MzHdrZaAimW4Ni4GGDgEs3snXWEG31dLR0ybDXEZjg+/SkYa+wyH1hbmIp5FMHE+I0Nt+ghHXe9UNPr9kx0R91wmzhPDiv62G023qWtBUG2C7Om7ZWtPnBWKdy8LBHrz47Fk48xBl7GA5cltu/EILx4p6yn22F6d2JjpDLyE6sPWBIPovfLCzyoejeu2enMDudCemM2KMd4YMzNbfbSiRkTngmC9dIVP8y+nz7xPV3482fwsxGjZKx4hQmRi6IyC/pGdvj7+ULDeLehaOyPE/3IFtzw+soHM5tt2kAiSZRFBJdLHojCEUSiE6h0Jxg12VAytdoOvfXAYJw+rJ6r4lagAwx7W8AQyjBZEugN5KIshwyQcY1QdyGwqQD3Adw3ELEdd8Q7jev0LaDgYVoBSAIIWZMu83gjKOoEw8iuXl/RxkgYX+QJf8MkuEhyPgHwzMfY5H7HiEY7V5EVgrA2DHoP2HPjeSuBSzHGDh3IoTqEf/IfHEb9tN7CHczgsauGZPB7WS19B6FvVI7LBcmP3M9onAbCzaJNa/SW/wRzorD0hj05bH2GOFIOxccR5eQ3BQSSMa7wxE5ZKEp6pQoIQe36SBsFdppS99UF4+MTYulG44LY9BZuhI6O5CyagcqZ9sQuC1lvkBDsxuGQkLQn/4Rgk/iLV0NCNHcFQF3MwaXP1MZuzXobzkp/gD9vjgSNW47dgUps2Og7WGH7jkUrvXKaSyq03X7PV/QM975iqXvEeIlQM7Hz+aX3g3DYduZywS2xcRQBSBhhGRKF8buOm5CEPD3w7x5ibkh5Os0SPqbAGL2RuoActmjIHEOEDe7Gxub21hpRBIMTZCoBcidhbCupbGxsWUJ9x4K7X4TleXBeYc9FbUL3O9RaOvD886esrpGcfTByCeuR1C48uegM/a5gNZGQ96NENJ69zSHD9ymUs3dGeJlzuNmFFc7CptlLiQfCzfE04OQL53QETuFjDnr90ZjwzgtQioM+Y2SfGmJeLofEejSu7xRs42FzzEMpF1er9ecGSwlUHCm1AqbdOsonJpnwJPt9n/mXuekNAn7xU2iNhT6dDn23QWrqkCQu61WSzSbZE3fIOhLBzoLx0hDaB0pJEuFQ6TR20awzdLTkt7GpHuHwkLp5Em8fmo0ncBA0jcAE/o1uHcVbPsIIVkpbLBZ3IfJwlLFu7JNNw85fZuC0T/iKS0gZY+Dpc6D7GFnu4L40wrEHcua/TnqAPJJ39jaZQnCnY3mBfZ7eNYgYcoI1/cSWe3xxhUC3vEjm/9HcFy/Vsfov2OIdRzzFeuGWEOsdBmEgnuAuA2hrsC4kQRdKkAMtQCZCPUiyxypOEY6n4ZYhKMHDWw1g/sjCkN9tF5PMBjVANLZYrR8hInoPQaWrQa1SS00IoXSo81BhKBtvENE/NPE5yoACS1jJO7WKvR9LInNqgjeZQNclu7hMH0Z3vd4Iib9I5ImbxsSW0jB0aMIgunN0bPeZAdzXiPYLJ7+/uQgW4VOSMZWVfntpbLolhSSleJhx36vZ5RNXz9MFjKjpT6kUNOUFVc2gJAM+PIdwt0KFjsCp5WB4j6clEsRkkR6X50kmHSOjLgqrDBfOkRhLmoEe0X8cXEehcXicplzA0kkH7OrAOnz9eLoUgTr3QEEAo+1cQKF+fQidMTiJ4XLpynIYc+X9N1CkPJ9BshMHUDULTbElXeKQzubbvou2KkBiGQlm0MiF/XfMxN93LtLojAyi3ydG43/LZP06fiKQPBiFaujux3C5h+Zznq0XXycSIJdE2ymkGyNg3OMcrOlNaF1ccNljp1oRIQN5eClXwjmGiFVBkhbwqjrh93uCcYHkNJ+6lRgZBMpMEUvkUgyul6Y9r2nKSwRGPwrcGUOEr9AYaNVYP+ExKmtOOFsJuI9Rxh6HPB9zAMbhTxCydGunr07VXRL8oUxTNEjFPqLnxAyhww5kIzrwmAysftwiLKeXlabdDwdhA7zAArLhThCmRG0dUnBuU7uF65ht5TAYxSMRA1IIl4b5NPDeMyrkNN9YK2wjMlu1qYgbYV7Zrp6iBeW6Gj1htlMZxDSVRXfxG22CcmpzgQDsTAeiRIaV3OnWmiKriMUq00Nt7u2VeAEi32wHmuYLuzS0OUGhYvrLzihWX1CZl86gagHyDmKoLGPLTujoYxzpQoQD4rkohEhFYWNECb/vtZZbXqNKK/xPeFXWeZVWLPDqv/gx9nuBDx69ybXx7ixqk14lGn9ap4FN1jiMOkSLOtuD/vOFXLWkcOdRpdh2d+gLtlGj7Y+tKYklhsUUsO4U3c79p4kzh0MTBbisJoeyx9sCMb0fYen23BtzceHdFskWqGMLsvhtsO1RN84BrZcghPv8OQHqzYeChdO6fxuCzIPcdh+sA41GFsKLTbvJo+FJAqbeourtbgmWf5uEimYK3TZ/OcYeoqtfdz7zKnGUD8ZvS/lsOhNiDJAHnpspo3vOpEo9oLF5t0m4JtDKPoUkeZCqy1Vaqen295iXkQKjC0lt3O2tEj+YRmuvrvjMm22OVxdqONDvzXamvVmOCi4UuOhVth76HIk6XoW7+pFZ0cgvG4E1hAec8jmcp2pP15h7XO98xB8WEWWx5OlVos1eoBwFFp69DcYGovN3dawutRs+tK3w/tj7RJB3SrWI5KZ7kkOHXBucRj4YUQDSEj1v053oiAke80E/EEUgWBG9/hfXcX6hReFkqtJBFsXj2fzJwhxN962M8X+jwhGV5tg8WJbTC3A7jxk4gjOjhznWwjCp+sHE3esVvbfDa6tH0+8F+z2I5n8yMT2xWbDexML9ygEs4OQ/3T9Yb0PwfLI+O09Qu6+G/asBBm6RgpBJHHRl/vYwfIhkswmgunzoxvPDQiBZy3D/NoEZG57IRC/zQtmDm5PN4wsrAoE410NidNlIVlaG1Un/HePawsNMPXDpxPI9F33TSOYHx7u3z+srKL+eHvA/U4EITDl1z4dRhh9XIKGnXvwDDyuNCxE+Di8lujVJs3B7cf7poMcV8MRWH7MwcfT7Y6lGxVt84X3Sx8OZsCQX1s1dV5C0+7tgfJCvGnnHklk+BKM24c0bZ0+HjQgECQfp9R6E7wdVO1vTrfX1k7Pp8G0cLsaRtKRuF2I/KXjt+t7RiGxxuHCO3x767IZyTfyGaS7cKvpbI/v3acPjd47yNsSm+vRj8zoMki1jHlv4+rm3O5/UIP8nqnBL1kuUc/6Mos7jxT1mavJlT227IjajLUcTV3TyJ8bOlSLrIaqCbX/QWCIjjxF1AmpBmpufqmy9RKoxNQdovFL1ZDEff3ICg+ikqNefB3V1fNXk6vlfDk+1Oz156RvTUHn9me6UQT7d2Acy8HyovbqMr79fd9hAEk48W59tReUjUClsuQ2L9a3p/8fABFIiaZXnozXlOdDpbT3r+UQWiJQZpSIpyw36tnQGqN4OnNEypqwknzf3YlEKlIqmiyhPMuk6T0IqgVURD/HaG1Z0f7UDzVBS5YCtZClhwXUkMap1U6rsspZziBAvUjxLA+pcmtFPUuo+T3UUtQmX43SmJ6qJ9VEt1+Icp2eI7WbWvFqwYJKoqza69Z9OzVcTqv5ps/Xr0BVIPIb/gzVFPGKbfO/ojWvqOtOf9uMu5rlD9jENjlaN7RM1RJeyhR/zS1LSDZa9v+9ZyYw2l/ru+Xfs+aVynNPAkKNkYiqwe7TXY2zQyXqNe5w/WUA+YpnaQuQP+986nmkmvhVHY7+1TORBN+wG/cfO4jqG3Ep/bcB8iWMmh36r+1/9Z84CP81Dzr+X/TvAkR2mBC/6jYUlojayWs9YL4iPuBPW4H/t8S/0VdfxSoT1B2LXv1UNcCZeRKpMT5/PLEz1Ey1FCmrhf38GHWV4dveXuaNXid9FYAIbeVJu9Sun8oXy7+Sg9IZSoWldoVSfYmhP0JK1GyMDSCQNZwvy5ckdst8r9gz7Y2+Tfo6AEEgZsJG8ZlMOaUcahJyJgJKTvV0MtExZUIy6zKAMmMSAmNECiEDTZU3GRO0l+6QNOVMCJL6AYMJZMOMgnjiMKrQaAio7xRjY8YImHKGVzrXe6NvlL7SriYEbfpYKEjGkdW7MzDVOunUuSY3unQ9NzDnuM0WrYM0+UfgfYsuu6Nw132FvG5JIgTKalTvuI31Murw66LbbGXN2dh74l3d3c7KSSOPXl32e5hO6bpnG9jTmbvN04GRbLd397Wahb7RN0lfBSCSE7O7/WqTpZhtacPcKBgrNE/eZX3OjXzJRsRl3h3de/ieTGmMvdJw8ENhhVGzndNiO0IIhgsDmaN0q8Lg+vvpRl9ytCXUfmJiYCAYf9jW9g83389/uuI+PZtJPOwRDDWfnCh2//zK7St8GftG3zB9HQ1Ca48BgbRYFMGROclcLIjSGgpgyr5jqTgAo/pzdou9E74dGIzlYUd/FFtBIjkpDUPYfFs53E3fIP0jaN5mZ+k9pEDp6sohMbpsYIw+MqPfgQlzyviGjjd6/QCRTJV+RFGYL4xhYMhrUKJtEDYP8zklz14xA8F0nLYom6VQV8jv64QzfXpR8wsZ9g1C0DdJZM9ubdbbOSmNoTA/12qxmk9UqBzq0x/CXKb9Pa5QcY+rwiIKcV9sO/A2B3mj1w+Qg9ISimSzjISAbpZMegw+Fi5hN33GuN9QTusnOovN2nl52blshA8x80ek5k2tKPyYTjKeXTib9vV95j2Dq9h5Z27WW5nFJ38o2vhBf3N/tdKZ4/uYuivK/nlh7W0K8kavHSAKAw/3CBOJwjz8UJpmrHgGP5g7YNYljC6vCY/OQbA4RsoV0czvdmL3Ls1Rg64eIx1dFuYLC7CdXmE8ZIRWq0Kwuw0hEEYhaG1mxzeorR27WwWKUWDIzr0B5I1eO0Ak8z7dO/sHzszZ65QvD7asAdHTAk3mWeb10eZzXchDvJBhqxC6fdeyz21xheGHZaQQHD2kHm2ldS4L1rUhq3kGZ2mkz9BYvJizFVQPwomQ/VPK/JEln+7og/USafHN7Wa8Q6fN3cG3IdYbvXaACEHnnHMuAydHzrUzkOsDYGpbgKT9ir309PfO1RzE5wzImzbn7DFTzg3otY+pKmRm2L7mSXSibNqG5tv7YHoktcvJiH0194MKgEifzX6dQdC+7hw/MMJyW+o48MluG/a84eONXj9AeGkFIqhx95G0+Y3UexqJOu+AGmeel2d4vrShF9Xbty3/3wjgGwFIzebdQoCUUHGeoql7BEVqgaqPwBOHqPpNadenm2pstVwha3yYtMg3DfITe+fB1VZsxfHfPRIHnh0vvFcNNh4FzKrB7L33hjLLniVJk+9/Gr9nsHF32ibpqRVia9whifdH4+nq1sMvD5C/FxStjSv/kx7l6+H/MvxogAjKVp8H1cP/TPh1fBTWQz38guHHjyAi8u+bw/4vuAI1m/r97ftvctaXavz8Xay/ZbQq1s8/4K5J1hCovyFAQCH/ruVsRe3PsNq12iff3/F11/W/OkC++3daQRa1Tiu///n7e0R/H4byLxuIW4Tf9ejWHc7/muG/M4IYNkSQZoVQGxSrV4j8PR+WbUi1sJn35MJh598cQVq/vCMW9Nj3PC+VWnx/EFqf9ffoZt5qxHdwro7+UwoVN/97lwr90+HXA4jUOvHsPUOElvwhSr13OSzKYN9B1eVIDYeoclxo6EMTvn5l0/1as5N792JFFFtxU6e02mpeimi2vGhLoZgFLMfbEItPsKogWGUVsSKM9KBAXtOC+wKlymkOW6imVsr8eFNUqUWqC4XVUM1q3KgUxFBvEgBqBFa+FZ2+Ny+l6n1FMakqHfpaYJVphgLITF+VpjfWd1oM1lx1gPxEJ55DRURoiLeikJoLLxULkcqsRfFyhZKyHHZ2UbT2IRZbLKxgZAl57wnvwQEitBVbeH8lp+Km24xZGSZK59Wb9r981V/B9PYBioowob+nIpzhw7dErdvM6ohidwcF5YYu5w2k3LLCAupvLrGkKlsUX7pRUsmpInifqL2jQlEYh8lei5u/58l021MHyA9zoFO7TlBchREx7+5u6ygOd9ohPeS/SiP0b/pvRl3WkavC+Ny+bi6Gl6awrWyOd9qwjw9/SwwMoFfC4d00nc7lqNinEbmZ83caTA0Vz87hxgmC7CQflptRK8W5ZQTbUbh4zFO3/UtvRgmHAz2dvedgOxchdeHeTu03czqFIvqAYv6sOKqFpZPxxwwijEWe5y+h75N/PWY1py+Gnm+539gfQzKhneUGuJkNLwr2efWy0bYafSgOryIs2VuHMujR4tk80uXbmB9AzLux3Qv3ORszB3PjC4pUcG++j7HtueJKZQSJFWbDD2DM27c2FuwI0a/jt31wEGB/FYW90LOUyURbNWqheBZFTOCm07svkLrw705A+mr8bkWx04didZVePw3+uaUpq3MNEwyL1+NDY7x2iAjnZ/7PHZ76QuWHjSBGp+dqpopPvwIk24o/vHVwPcZIfnOx22tjqXHvZj3hRwQjcrLYua6OB52eK3qGD55y1yx8S2xw8sxj4GXhLHboiPuLrDqh0L59tGaj8/ZmrzHGkwmQWHej353i2XG8+yGDjDtWOkf5GJr9tNu+Bmv54Y3npiemQpqR0OzDlSvZgLcTg0/j8BTvWInvkckdbD1PIsJ2o9ezzVT869NzKIaIYngDW9Bz1hnxGfZwk6d7ms7QwnbTApfB2/E9W+/g1+PCh0UIn41ff+bO+zLUtMRuk6t7EiV0Ze8ervK+ZpZmF47bt+ltDHaPsjy7stP4ajWveJk7PfiwypjTv9np8yhk6OL+LmQ33c54S+WhrrA77Gi3c+J7uWqKokRxUQxvTtKVu16MuMTu+7TYe6XITaKZu2PXz+igw1MgsrnY+dWGCPbNwn2g2+qQ9aYbyDTuPj3Gw/UR5Id5mNr4/W9/P4zIXwKkT8WnUaIYekaJY8Wc2FsOy+gaTCGiuN5DiaBYStrYvEJzcYVzB4Viy4Ui42JkcAklmGSBAxadIMK00watDhsUAtxn7Ygi89t+2AoZbA+2wFU3rT7NhgfNeraN7gM0G8Oo4CpMxW3b3SgBRPB/QTM+hOZk0zJ7X0M7n0Ent0jnumDGGYPTPOkPvWh2vZiLBYrOZljyaWHID5HTsqHwOJrNpIFCseKCwCSqyk07CCJoHjexx9dgJr5kEpB/KAFkJDQF7g0U4vnCucMQdt3WJK6xC836HqLzD7HBNkTA+4Lm+rEEEM52IT3YVXWBGGPZHjraWyj1BIFeFN7x+gjygwCCdn1ob2xv+MspVkO2lc54bwxFwL3de9B4Qe4jBlcRRISLUEcaxd06Wuja2T7J2xm+wODTHi/xr/0ojr2iWQ3y4NSilGBkDjpCXyyAKKI5u2Ih3tG7XWxkI4xWmgefaKaSMxRmMZgM0urQeDoxOE3YS+DSXM0Sa9/rXNv441Kzw/OkEUTwdKB0PoPBU1IhipMC2pdBE9inJzQAy42FQsftb2bSiS4M9h4xmB4cw92BjYPst/a5s0JwEo1IiclgIWnA5cLBeABco2ihdeHA76mcQl46Ogje0pJrRSnfE9L8sL0Wf6IjAMPrxLJ9GDy6YT/7rZH+uFmvr5toRXB8u3e76Yq5/NEMgu8YzcmtCZDZITRDpc4V89/Y6fZQ/JBes0Nc2JJRDJ7d9RHkBwFEGP9j4+8cGqlapM+ihIZEK5KZTWwovOO9Gxu955JYQrNvrUHkyZ84gM11NEfOx8JZ3s7cBZpPQ8jUSWjTzrEXYTVY+kYU6YD/qpDYfwXIfK5N2E4UNjZ2F7g9QYniJoBiOtlA7y2aBZcJkMhR2TtoYNuq3GH7xe7GbkeamTWvdxoRwd0BtsQ5mvmErQwQwzeFIjBKLNQDD4O73zTt65jThuLiK5qBeArPCwaFZKkWOyZAlIjg20HzOWkw5Pu65g5AZAHFnu/TmsdD+VCyMRvZ6/Q90uBMgXLc0O8Nb+wO3pgAWc6xHUDzkGwROi3xJkCed9HgC3/r0MI5+tgTWgFvFUCGh1AiN+OJDkQU98673q/xPnbLHWLPtqLprK9BftwapM/bmFxFVY0gnW6UpjU7ggg98VM8+ygEcT5hMBR53U05b5znbA/S7eewFLIzfGUBRAt2R4FJF+YI8jlkQymui2gCHW8jSN6mODaFKXbdaAsgugKQFQsg/o1SPGsn8AWDuWHSuR6kDO8rn/nl+YKoUKl6x07eANKP6VYsluyCJacNQehxGiiGxtFksm14TtGMehBBIGhOsYTuDgxGk5y3T8BkEFyTEB2cAXOLAlAcOVGsn9HgTFsA8VygcC6WACJ4V4ujkM6uYrDSbfG8AkToft0UEz43DuA4ReNet0aQXasK043zKHRuB8ayh+yWO8RIZjC4rY8gP24Xi7bLd2xCT+Miot1hjJhGORdYaexBUnaeXZDKehDB1qVoya6y7ucbfT92T8jOY9Fag/QY4N7jPtsMGRfN2W2khblZOP3dqLVIFw7bu6BlcBvsKaY+LKEauOlGMZ1roPexApCdwRQtrlAL4XE4/HACRY9Cx5iYEY5zgiiKz2h2fQZtzjVrDVLA8JoAGaUlHkWJYx2au+hxGCgKvz2nzXsG7lM0E42j0DICkQJKUByE2rAHkyw3zpDKdwvdG/BxsIWupAe9cokoOhxw3rROg6MMENcVsv27e2voOPK5RiDciRLG2o9M8SKK9V2UYrS0yEgZti4hNdhP4ATOfzPE7jhch5FS59oTqyhs2VP07YeBcodE4MwDPe3FOkB+DEBqz4cAItwkg+6cfwY97vU77wzYi3sCzgHsbqe7uB4GoSXi8uf3FNMJ1zoXCX937/gMS9lviedPXDvHfe4J2lyOcfuyD6K5SKDb1hoKBB7P9tkKYWos5tz9ZBJBd7IDRhNu7wmLLjTn2RmuNjEY9dGaU3CVd40/5xtodUY84c1rGAvk/T4/D0l3wHlvzUTikV6MTYffsa7MjLNvSecUiuA+rCe6P3/j9vnzz/QlbSg2PHeupLsFAsco4T7rciePYGcwso0IajPpd+95bCqcd/s3hhWng5EOGf+WuBqm63fzKGEi6PUMr+/RkEyByi3ykPVE9sKLdAZR2Buv4eX3brfbM8LHxDfxXyzgDqFFWC916MiML+DOF2ApGeieG97jykOpD4fsgW+deyGIcBD3R3b9reUO8UJLt8Mdvj2jPsf6MQBBEFX7Hg77w9alEqHlPHqoEKHvONMlgnE+36LHQISxpWiPiJCO9qEuoynGFN8SA6RHaJuO9msE+9K0ah5AaLlZjAlj89O6zY69D0QE2/SSAfabxUsbQtfpxwnsPQi2PsVECqGhB2NASmXzzVMJO9gz83bbDIKKHp83oPrmlxrKWz2x5S6E/tWYWGhPTSADNoSeBtD9UTvYPp/2t2H0CYqLK5b6FELMjpRULT4dGoj0LKcREVR/dERNKIyp6IwaE74VpEqJBjXBok+skXdpqdko1UKDDNhLrW+VlmZmetBiyy/DWP/S/Py8AS1PT5cGZndNIOb4ebycEtLz0S5EaFhdam5rYCKGkIoOlDp3QEoBepYHmDHeOkSwLc3bjbH6CPIzT/P+NVeR77xoviuqyq4tQ4Dal9dQyayw/L3qmCt3O+qdHqhRWV1WK0CqC0SxN4SqElNp4BtHbcvKmSXeTlRtc3iXIYoFH2/Saur0Vzuqto8rhUjNgdD6Jfj8dPcHopQIVd9WxEpLDYlZLCLWd02ZVMuxuEXgNZPXIjFTFnE1NC1tmiXLmbl6k6eq3LSWNZufbxkVnFc0mUzm65tHdLWO1/ZVGdaLlV/dMku93eCtUZUqVvWCYucknkHVWN2/B3SlR6pFIRVNCNVdi1SprZuE/A8cd5cfp0sYm9TIf67i80vIf8v1nAjHVwN1k41fIfxwgLz3k4P8/1k6WO34P2ns/3z4JwHyS5j0fDejxfufdDIsKPXf6ykR6jcY/SLhRwOk8mwJzWtjyK/yUP5ioQ6OXyT8FwAighLRb0Y6UlncUopz+xUlSjPRdImI0lXr5FcuqVgDqdcCxeM66lVkVaGlhlc1JdkVijeXoS0zCKUiVZ+71MNP91EovP6v3YsUPq5aWWOJPtRf2WmtsQaqFJiMFWFSUVdhr/2umAitoOrz+nr4+QARIdoV/bSWgpaUfN5SyP3eRivN/UZJXSv2BkS9PE92JfoQ28r6SnP5ue9Z+7qlBaNHLS2ciwiZzpWPkwMQ61w/1ZiMPUbP5L0NwXbc+fIwaUeEsRH9dCP0FPaiYHxsWFmftJnVuBpaQqRHpxb66O5smMG+8HUtWkdJPfxUgCjuvHeF8fglp+E917PmJN+7Hr+X0A2ak2HW19HhfOetJ9uHrTuw5vQoBMXH+HXBdwYx76b/JL4H667J9d+eXZKJn6x5hxUXzyj/sP/aEWimLTB37G7qtSOK/bPHyBDR7ONe0ygNTv91Ie9Wwm5iYygxihoveNyrnR8czi9Eip3D13WA1MNPBshmBCEc5uPvjlCsJuxwmmMvDPbsMhef2Mq2wdpvB+gogs6/oARxroAt90T6QydMN46lG/tgfBTlO0K084W9rxDxgC05yUJeaHAcIih2freFENmC+1Czke0Ae/yU1ngMlhIzRBwzKAILMJ/4/1nm18MvDJDhAja2EjzkDTQXZ2ia49Ox+ASTDlV6zteHMVhq7MMzlznOhG5RwmVoDIPbWWLJGNiT/WPZCfBvcBhKY/B1nL1P4JpEM97LggtsCcsK9ciFIja48PS08Id+levHYPaODg9a4dzBO4oWIguIEXBHdf0FXD38bIDMbqOJZnnqRinmPqFQzheCR3QXYG+d4a8oUvFDXN6z4eHhRUQxn2xGsRagx9kG9tw54eLqdr6P6ZAdxXbQHEFcq2j8BdK+oeXrbo2gOJhF09oU/ibpOm3ke9B8KjIURoTuTrwZlBAZRdFy5XTN1/dQ6+FnjyB7GLwkWTQBcj2MgS2xysF4Q2iA0nN+fYdB62Af7n3Uq2vcwTEMnsP0OJtLAFki6vh0dQmX7WkM9vwWQDJo/GuwHRzqbEB4BUhPbgJBaMtF0YRvKUTQCsck3mUTICtoBN2ZHauPIPXwcwFyErKjvCdseVCK5fYYjCZtdEW+jqMYumCxfQY2fjvAl4QdDI0I4ivATHyLmKMEkPwS7h0UIgQ3oCW7U2IkkEFTXKPF0YWYbIr9ObQQXEekGVv2Fi4/fOSwcQk+tk/giqKEQCdiGMLIYGsdIPXwkwESCYedkTF2vCgRevO34XwUxfWfntA83iKPyefimbMVPRu6PfO1ohCmneFb5xD0ZEsAaY+yGx/3bGag31l8dH5SrJ+A8yOawAbicfjdFwMIik4/SmgNda+7Z7H7iuPF+BCK0eTJXHILnKsoxX773EpXcO7a8VyfYtXDz16DHLWtrNogHUUEof/gdAYRuhYNhNZWRH08yujWZkSt7u4va4vMvjDaj2BbVaA/2qaHjyZ39rKXYF85mkLR2g/LYwjzhyycrExOFoMmZ8+5ZbM02rtziN3Z1b/SLyKKgYOdFMKyqVtnjqaZX1mISt2Wrh5+9hpkv9qa6J3ZxPusV6L3dGAWRDrQ4L1BVxdYtPb2VhQDybFaduyOroo6pKoW9WOy9fArAASFuwOj7LNTkCpbJlVlgaSk6vZlAbEyBStfs+1Y2Dr1j2vktUDApFWKsP94ccFXQETKaixR2LMx9Ks6i7qSUKp+FKse+OlHTVaiqPd5f5++NlqOf1y/vTi1IWaiRp5t4fZ5IyrIe0mCsdZSzqxPperhVwTIfyDUml3/9cL6dKkeqA3/AwAR4T8wjak+0P4vFApSn0PVwy8NkO82DaylQP4Bu8h3if9Oxf++P8J/fK2I1N20/WLhvwGQKq9P/BeDtTiX/7zlXqUJP9L/p8hri+qP+S8UvgMg//7vT1DN/2gEaU79nRFk5u9ee2aJl++oY0WxvP38s05SuhRSEfoPaodhIN83cv37rmpFSDXXofUzR5DLhYXR4x7rEau+lKmcVuwUseK8I3nL0TwEhUrpOyLNp0eUCJfHZS6oFqV4GUesAG9fFXlU2KzMatmLLit7evToHHl3RVYVIe9lKlrz9ooqakwiq6uiePDAp15URdprOf0v1RWnWoIVqqI1lX/fzjJtTfFbU1ynKOrhxwCkdv6NZui3w0V3dnwGEfXODNZKKr4Ekb908mcWmkSKRWfNvYvKZEYUius7SjQrLktBlYNOi+LIaxZUOGue61c2ITaJfs20FB87QGDT8XgyWEAJb9QW0TukvDZKmMq2lEmEpQc01VBRr3SgFMd5mH1GiaqWOLOgNfuBcsVVRasloUozojA/bpZQb51WzWIRCO8arBBV5sdxXAfIz7u8WrExhyIVjIBgpI2qv2I0pzWKowhKaBhRCErTUoqYtDZEhLYubhyC+a8lrS0dWmE9SWkeN1GVx0WbQiwSGbGjWHAhgu2NU0C0WCBM27Ei2rrB0JTUMCZSVnzqA0Hm22C+MY0AZWpEZKQFEaoBYmrqojVRKmlIKxRXHShBzaTLNRZ02uQzUm0oU8PZJ7RgH7GE2NM2ouNvOLaZMyCxtJqRUp4d1SxY3rXbvlEoZu9NPek2RKjuCMGespURosYmpFxsfqJGWvDVAfIj3R8YYzaE9z4KlWKm8QlOfd78JIVJFOm7ETocPt8yJYCQKvoc3a0wf33gdUYuUSx6vfkFFB0539mGVyHCRNHr9c7D6GLB4yqUAHaX822Er1EinO8yUVgNR06aV9yuDUPo7Xz05dYNRoMoRn0+5wN8udno7p46nA2M96GYjnhzG0LmaMcd2Rxj3um828V+53D6JxDWcr67oaCUn07SjZemnsXJI4/rqw163L7cLa2PCno3wLi9RESYzPvGO3Mz9HmCvsghp/HI3CiX3xKBAUvUisOR24Ijn9e5pnhxwNxXlL5wOCIDYL9z5vzLgdDmOvMFFB0Or/MAzg+23JHhlCXhwBvMf8LzhObJowu+YK6Xjkb/7D3z31pUAFshcxYIzzz5XY92jD1fMH+AiHwrDjr8E+i1zEl3ZAtFX8AZ3K4D5EeOIF2erHcJVQMQURTnOM9m1EtTeicnQoeT49ylWks0sO+CwFmL0euwsfS73hnbnUPRmv2oFhun2Wk/V9GsywRIy1YXF164bTo6XG2fhJPghLHwmz1T/paXdFPx/LI7u9c6P7gP600ZW198jaMg3Iem1f5gmnD8tKvQ6P8YC7vAnv+i+wcnOf7D0FRr8IxDT+D0hrtii90ThpXBKbUcDwhlT+rrfjNCx2/WWs+TG+jgrhFLHNjih8wkB8foH5xAFPNND9LqC7WQXpyQ8DjzjrmXKKnFMSla/bDc9NTcl+ZmMKoPkwscWwBhN5I2zlww7ErNXPbMOV5O2XHBTnZaTyW2+Py79fNDjx8pqUjEdP8SV24U7t5McsaYbmUxMbQz0JwcVeftW9hCkeWe8OD1dGvugi/eZttSHyLCwI3dCF6gnY6nnv3GPrTz2WhZ/8NNHSA/zgXb7O8b/+BV1DrxVKx7uNtD031FKArBfSKTKElO8sXFUrIZwTdJNDQD9niG63U0/me619CsO97+kPcnGrgdR/EpTEPiHBGfNYO/6WYkEYWP7W1wdQa3Z2gmcywEwb+NxrFN+BqR7A605sYY7UazG+E01AY3OYOrTUglU9DfmLI8tF17sVCRz3rHEESx7RPhyMu9D8VoHv8oO2fFUTrdJuXJCZrtuB1B8eDUjB+UHXYuOkz+8J6ZdneiS+g4LQFkHXt+GiYaLxviA4hi1I3m1A2RBXSpgzLxCZhP2BFhKn6JCF2JHlLxWDSbsgxoMnBQYtvzYOSP4fJDDI4CTOarPMgrOroR3zaK4BGrSQNiTYt1gPw4J57BVyeetQC5C9OdDUS6mz5xdlJyayPJfCAS+DDKlyCTQUQxe0vGiwiOBTzxb7SNzzgX0Yw6BBGaD4bdzvwMdwUMdsP0JdJoZq9NgDwFSOVH4KNTK7Y3YbMXzdIgK0HEl/wm7UMn4wdolV+FWHCEoQ/dke5EgEkPmoyzmU9zsPRbVyQQbBwg/4Bm3wciQup8+TZgN9tROMNg0sv+b7/VPudkLUxx9KiIu9OshqcDzWqihZm1WU/SpS0kzBTCnlBEIYL32ASI4wZNf7vxZAGkp8kbiUQ+9PeHbIjmoBvNiwfDtIiMxll1oZlKNiAijGY9i0rwb7DtgrW4f1UwnA/wqelbi7JuDMcUtIZmhC0/aigenkcEoWsj7ImHUb6S1O4D0wMcRu6lDpAfN4Jc/P7D78cRqVmDiCQ7iRTSl4cDDUST7A1j5F+6Lg977OwHWfAimuFHMj6lFL4VundLtC04bzB4sQAS9qzGnkINnHWi2QhzmJhAs3nyBhBnC3zOa6FjE042MJiPlwCCYzRlqiqOoiT3EWLeCT6FRy4P+0aY9KPJ5G1cnMF88rLvsK9Lkf9cAoKPV78LOA5MPYUTdAkg24HUN+400760s2fAEctNmcWm79ylhF0C4eX0qEObwDEiw8vpfZ+Y4D9GKyH3hKZ10Fi0ADKQmO85POwhmrShNF/KALElli2D/s8RVBkgCGOjoWt48lkeSdPb8Su04x4e50otGsNw9MFldgZO/ShihfZtRBhzPkfHhtwo7zRmTfcjKFXfxfqha5C2PddmVxWf4moYJaw1pbg195sECT4F7sFj7e9w5GJ+MI1IfoX5xh6INZ7zdc6i9WygefYJilh7Ck4TLdx1oNkN05LNIOJbf51ipRwlgDi1mCPIowfFmoMFFxQ3LGnhBZTkP0MsOMFkEARVBojTxsUdjIRaEUQIFNBcmySACMF9U8/aNbrEmsnZLLN3T68H5d5wlZKKk2FziqWnB23Q4TBP+7Oc1cKaD0QYv0WJ4NlDM+q0drG+0pz/jELoau9HFF88KHOKFVxD0xnkPoCiP1f+jQgD7T00uxa8Y4golgZbxLlK2e26YPj64DA0A1vWsuUpoVFMOlHcvgKke59M1g499SnWDwNI5a1AtRto73lmq/jhBgYaN2KtX2JwMOgyhNUPo7HzgwYOfDAcORyYCxqcf5jNrDqKlLyX97R+6eOhcbFrMuHTCPZsb/rUmxxjtoDBkB+G8lN9hd8+W4v0IF2hFrhPaKFzGPY+dJ7vfzjmiwOWPnTEpg9GzGshJHsPMecYhqN4OLCwbK1FVhPNrMRbLxnKLsceJuGp/aZrJR4UhHRHNDZ1kpixfPefYbDggO5If8/OPTz+7gus/eETShD6G0dTi454c7rxKLWS89pYD/Z09TQupBaSLoUook2T6c/znDeupBbjx0zmIHwLB403scyoZtN3OfBiRJvmLzmOQKbxNLUzeM+iF8V03BxBBg5aBzYchnDwm3Xo3+/re4wI3XNdXbbcbF/f6BK25CG0No7BcYDo6MDl8Lil+ia2PVhE5c9RBA9QkXBs+ux3W3WA/Oj3INUjyIozEgxcxBBh2pMP+rsg7TtCCQ8uZ3DOzukm2Hq9kfUZyEQ+u11DbSj63fmguwdevK6L5V6NCMsB19n0WgO9k2iOhhC164scnY4ipcJrJsJtsBRWwk4vnGwcuTynsHiHIhNxBsMz7C0iUlyC9FxL6SPvjWR4+ormPGxgu3WcaNXpdATXUOx4XUPLBYVg3wt6I5t9CKJYKKB5uIOWx7zXtQUffV1w6MyUbbEyLtfm/G4LWy7X+vmaQaro6OXU5fp0vqat24hdDscTzLuD7gdYHYbdDnMj2hHcA+PK6Rxv4MpX1JlHFJnuoD8D0RMUfeN2a7fb5ZodQDHwIQM97ojrLg1T3b4VYrN5byCKbbYLYu4WWF1nKhBxPVuLl6OgqxDdRuYOUVxvwdiw13O/vVw/avKT3qTXZos06zcQlV9zWZHXd77LQUSooa3C3j97Pk8Um52osqSKqhp2m1GVadEJ2vZeeOWNm7znNoxXuhr74drvCquZsqnK6Up5k6aahbJ6qVBXyN4FyxmvQyNVR0hqW1TbVSL1A478emexpBSUILXG4VZmGSxKRFkAUWZ+mbZc8MYr5Wg1l1BFT5lCcbeGftVLRZVUUakqcW/yVbXsSkVV9RNfxV3dIrPQYquwv0+AKn9VVFnqqqWWP7Eite4WrXLszgOUlaq0CKnu5Ao5lb587f4yU/2a+58KEBAzVMXNrwp2ECmXoIhGSrEa2uocKw/zo6aQMj1YbyQ6UVZGRVWZCd6JFmpPOb6TXcminKrIrBJV016p+n5Xz1qkQnW6wlCjxJJc6RhbOPSsK11S0VMLkNrur0grS69ffPTzj7v/k+4rBd2CAFJ52JB/QeAbp4Dd9h88rf9viZJaARUsf79IetLvHFhX1VTqNlOv4X8ZIID8i0YOtb/M77fBqzXIrc34fjkiqL+/WLI4FK/TqO98Rmv1fH+QunXyLwaQv/U4VNbI//beQK0x6/f/zRTBppFKymStTvyLYmuXzN+/tEPg/QbE6xr/e0AnSH0k+UlrkOplbGXWPXSPEqB6/q1Y9Vcm8A3FdDlekdTXynt7IcQqU3SuoCqkVSNKrUEWViLagFStz2mJClLNUC7136OAtzygWo6xbLyzQlpKVapmBr5uoaqrMbLp2uXcH9zqib1m9ky9ElOp5buWIu/UVrbNdPc56rX7Jucq7BURVY2q8FbMtu5PsFmNQKQ+5/qBACnvxCjrA7E+hP5zNJ5RdKmIqp0jxVausm+UauwpxxEsfq7HMWVV84momxbF3YYpkNdtIuZbUQimAEQqm1dE+8AWv6dcs9KX4vNgM7psf64qhkmYTn3etsI+pxBUWc7HtNDTOIDlOJSpc5R1KMUiLrMEO1DwWmfF+Oz0vD20Fo1FrixSxVAAi7zMJ4p3l+tBOfomuVwmGNllytSKDhfyWrnlgUpXURZXvY1VplQcOelr7MH2ZFMWtOpXsv7AKVb1zmz5yWNvAc34JIpyYTkimidH5RFJJ2JU7/OCYLO98kjV7muLxw63hXcCFXcP5Qez6sfanR3OoMSu3215ou2CUM1g0uM7Rb3ygnsAKUME5Y4hyi5YxVwsoGjTiLxrWPcXVOV1D22hfpjPa2gzynqwNVf3w7s68zYA12SXlepk1Kqfdc6xQhK28pW8q07tQsYyKtN2RcytEZO4Ptn6cSPI1vRocTM2MzR+MYLwEvGFe1gNzRY+4j/aCQ/fI+hOl694iGLL5Rs68ClkJeLzRCGd7YHjgK87g6L/LDy7OZeaXjR/o765NEwGvK59RGgeivcW1HrvzezsqQj94Yhvz8ZW/KSwhEJo+Br03c5A78O6z3WMOo7f9k5x1EVqp/96/IinueIWTByhRgtrHaMjGLtB35ANJu4c3U8mQITpojd4az9oH+rt4cbt8h6gOwavelPqi52Jx2DQ3RdNzBZW2emH5o2gc9NoeY54wzEIHFjITd95g6OMFNrPepfv4uudaieK6M6gI9w89YJi51vvxJDJy47wcBSh7cqb/1SySaQlfIgI8+MuX6+meeXwqnhyiSIWdrhv8suW+AWvb23Xg0m1q2Vl8Lm3ld6A17NURtS2z7u9VWDmcQzhah4WPEHXKSwEaf5is18nCvv3ZwphbxRVB8iPubx6Ltu5vJksbmcibnjKPsTCQdnJFq9uGA71fu5smoer/HzXVb6Bz0076cl4RLMQv0/tZ/tIZQd4GVxMLcSnmMge2HaaXtiYhYVQZqDbw0NyKXa8ipQm9fGhIWN3cOjhqGkLljoOW7MdHAzODUVRIvjdlwNhN7hDp7GV30bpHNwcOie5TGvT7OlpLnDysP9hlfOEqIO9teE/9PHoap0ODSERf0//7G8eUII9N5rK7Mxcta8PDbB41PW5Kaou2r8OpdoGU4yfdE0dpV/ixasHXKNw51iaepCxzmja734FCMp1HTtt+ty8ku3ItBZCxxlcvXCVyPQvsu2GrcR9bNwFLufa6lB7D8z5zs+jpyEbHIc0ImQOBs7bV2jIRg4yc7k2bM6zriX3hyWUKCYb71NfmsKUqKbbJ1lrPxnql477iYucxlyjxaOxtaYzYk0xhPwOsrKTXmjsYTTIRLxhJJy4KqQSGRgbnK+fz/pRI8hdGPTgF9NAgcgpYkt8JLCDJhxGEf7KWGgKRXcn7is0Jw7BsVWKbJLKxgiuoLkImwZHBF4oXKO95i+x5yn/+kaBaachfHWh+BpGCYo1N+LNoECxlGwDWyiDZwjN4zjasYTgmqevfRpG2w2Yu2DKK4hQ3CaWn4DluFpK2OHyww1KGItPIcJELmUqVRQ36MqNQINjhIj1WrL72Jo69sV7EEyq6VCbBRDFaQRNbzd2c4rlNMDdwVh2CaU4GobIIjRnMwT3ULi2OYzHEMT3Au6N8ixK83UOe2IFmkMfOc0rIfrbJVN58AiN221RfZrD5pxCmZsP2UMzM/+E4L2jK9GFEDy1Sn07JYCMOUb4GERxMQxH3voa5Me5P+hEi/MeUt4ZnY3MFmd/N0lwFNPYzuD2mqWkHc2QH+cpBvsOxhJ9aFacpOMpHZpCs5WkNZ6iJfuR3k1S7Z5wsfi7j5wlLgYQESGasytu97CxNg72hce55DCG8waNKI4CKIVntwRMoyS4OZ9BEYzSmm9TTLrQbFww7TMfrW5Y/lAshrt/27bjQtEWWkSJsBIPZ4RYqA9FquNkeHCNvlAPNDjTTOUiKzZwLaDxr7DoUKIU+uHiLJK3vwKkt3F4fDjnoCExBcv5NsHTyVLIjtLsh2nIBsLF8O+OCd5g4C9wWpKiKXjoylpGszP7t3OJZ1ryfSjl26LXj2YkHkUJtuQ8miEPzBx9o3qkIRdFEb06cw+aABlJDKC5m6UrG0PwviCHhc1w46kJEOcIWw6t6U+MEOioz7B+2Agyu48ifwMp34yR2P9885CZIWICZBLN9TXRUDPmY5C7R/PiZCTeg+Y0XwKILd6K5mNSsZF4DOwJhU1i2ZWPNw/LdtT8yeCCZaidaxOuCyU549gjxZ3oXBHteEAhiu0AohgfMgFS0mB7A4hDCZNeFEMmQITPoQm+fTx8C1Hr6h2c1iKdWCE0Ryo0AH35x9Ooq5eeUKwEkBFoWXF5u94AcuwT087Ye5TZTr4BZCiwfPNw309Loh+ieRslgCwnmxETIDOJo1LvNJR9LxbY8Zlt60q0fOlGRJjwzh3P+zdpcaYQ5VhkKIzCFjIB0paYQtMR+EY1bFLZc/NwkOu4f8leImJueWg+hU2AKPEe8zG0sZhJHr8C5MmhEAKTI/F03fPWjxpBLIA4HyDlncB7g0KEyOQrQG5vGWjvQ1N8xtWB5sqHLf6xFPGQynaROEWzFoG13sMYmsIJzc55VFn8Q7aZEkDyNrg1AeJnxYniwo92rKJAsZjQCPlJui/QfPLQnJ9HKgAJori6YMqnmMmtojk0bZMUNzkNqfabsrqSuXxLqAsew2i6exlIpi2AiAjudYI7aPyTROMzpolXDD6G7AS+oFAsWDtMtISqADIwOIAo9mfRvo8oRN6ck0bjljl5cd+09FJ0utCc3ZUB4lvkyIuitWne8i1/imbOQ0ewRHWGPTeNkbiHnrg5gjQnMigic8SyXTAzuEigF9G5N4AsekExOvylWB9AftwIEj5AkbuBlCPNfuOSkbpvZnxOZnCvoDm5hpNIg14Y7GNh8FJHs15NZzKmP7dn6BocYD/Rp5YHbxDvojFhKHo3oTfeasTuGci02dYsS9aupqiNk14Met08NQ4Yp42z4BqiBREIXhvNe04bxfjqxMuHB/D1ih1flH6nElZ8KIa+Mu0Uxh9pa9aMu9K21gy23IYe+/pHcw1if5gwovF+Bnc0vU67/dv9JtgHX7StJTfC5z4j5e3EfSYNuCdRwTPD3hobPJZzb6gF1zYKwZ742tYc7ach3g/LSRt0d4Lf02Y7Z78IB43n33rHwJtB4y6gvHeGfbqZ1YTPstZaiKdtKx9Kk6cSQJyLTMS3VfrsD/OWNXAypR+a3KyUqXB20uDcZaDYdGiy7zkGRhY+XGOENhjb+/0iRb+euPjdKUc+JnIjTDW12mw0RAbv6wD5gU48F1C4PkO6eww6Qw6Hu5lzR77A8Auaiz3E9snp7Z5HsZYMzk3ealSnw+tahBFHDNl2eIPHCJvtDmeoQMcnlGyEHM4wU46gz2O9WGcj6e3a6ETTMYf6lPc+7uzCR6fzCCVCetbhLcbA33vr8K2geMo7J+le4jCghFMPisIu/RFaG11BVz5Kw1zIl9uAvqDPNfr1I0qwjX9TNwn7OUfGGHd617ZH4SDpiBquEXZzLseQwVKpXbOnMOLO5z3GTs7rX3xuwD+KAqE1kvPltmjwtcKSywbhL4h9NucMNu9solj71iy/gTuKYvgA0t+kuO2I8wQlCMZm3ju0sIY9kkZU4COc+3yRydtzBIGLZPB29ALjJO/d+0bFaS7/dO70Rk6/HpoEesjhWDsbhqjX5zt6fmAg4POO9j4x6WHGNYY8JwMxGMoa9RnWjwIIaIVgKBBDEJr77IKg7doq0RoRWuzlQ9x2hRlpa1DIK0uDQvHYa9ht89k+DESw9zWLoNuahdfrBpvR+lWgrU2w1Ly+gZxpFhE8i7SVcqwSQ5U0CMoo8xkoo62tza4RJnpM5cpu6jP/NZcKBKOtFLchgpkwa2kr0VXaJaS6FBhlDo1VT+lKlXsCZQjl1o/EdDnWVuodjLeOkW9SBMO5jCqbmJnNMDWKRWZpsH6aSzWrUGG0qWqCUoZ5iQZ6zEBEUG02zA6wRJYYNZuf6gPIzzmsKIiqNcst51K5nPYtQ7DiVjp0jGYpn35jr7kdGqk9p2jlVnKU4NlCifzDY3llzioTp4qM15Ly/ypF6r1CEak92vhXNFcyq3rnXZFizVVzuS4Vie9tuar/m+prCRRXs0g1pVVYUUf/YE99APmhFoVIjZFSzc3o742FKmTVLIon3/jdcPAJ9crw9knNsT6oFkOVZCKnqIrGv6hIbQ3eyeWvmCa90VcrrFZQg5K/ZtBUw1TTMYrtoLMfBVBrEWWlaxpZ2/z3BJoLPyI1lG8iFdHu0BdU/S3IL2EP8i9Wbn552oYg3y1CGGj5ldr0z9W59cGOIP8heaT+3vggjC3GqBsZ/u8BRBBB/i+Pmf4nDp/XrUL+zN6ZMCVyRHH896rbcgfCJSJyBUERI+BBFFS8RfG+8IrXxt11PWNMme9fkQEFqcSc5tKnVTPT864W/7zu6Xn9/u8AQZA/W8lN/ot5DpUpxN+ENuFtE4d/CiC/S9m/rra5wH/Z/Tf69wJE5PkUakGkLj7Uf3f+ua03Xv5bXIQ/XYTa5H/eCiLIcx4+b09+0cJb9ex//CnWMzfrav79QtQX9T9/9PjrfyiT4U+m6b/NSP5tAKlRPhl4LoJENi/00zghxBLGzyXY/e0kdCQbno8g5z1IvVDPpkZ+z19/vtPyhyNI042Fq+Dz4gSPFtRviCCWm7fCt38XQBTFBCKiNP5+lCilBLNBiQg6J4odDyzHj9d2egUpcwglifeNbYgIp+P+7CI16JFHDeZJrZh5rB509VC+XaIKW+lQuVWVfxQ1FT94EnuXQeDJ+oWpqSJbTq6oNaU0i91NZY1mY1khNf1T6tGuIGRsLl+uks371LwSrG0IrknUowGRmh4LmXcxwjfo6nalKqek2lNBcR71XGpU9TOoqHmwVdFH8F0PFc+qWt6GXX/N5tV1w1zNrYdSiyqXmBGerHN/uESxUATPAEyN8jTZeqrViihOQ+exzaG+x+Kd8MBTvwZZEX/QUnsFz663CwK/fCsX7qOqs9YEZptZMVDq3J8zKyRQdapea41dUXyeRVW9e8Ko2CyiWJqiAo5aHyv/1OEctnnUow3a1xVSVSOCYxclT1z5ufGt0BNur+gVeg7Nm287nfw5gPziyxTmqw2KwbWBDs8Kmrm1ZA90xNRiMYPirrchh9FAzLY2OKHHEHKJj2awMCZvO6fLAFm/RpkfruLTIso0Eon09fd/QGhv6jh6D4MDH+eQe+rc6l+AmKmF3N3wzgeIbQ7vp827LCYOOg/6sM5v3Utj6bQWt48M5F5+rThWzkk6WEsGweiR98VBRFAbt0c94QyCpK1gpDXM9MF0/9p7BGtMOq9KAGFsEFGn26NtCJbCbWAuaqnEhuTwkVZB0sUJ9PxwIoZgHA0nFxUfBtYmc2XXnMNNVt3ZhDAXw/JofmJne9SKK2Fto80CxsZwImf2e+zoogOh48rsSl88h/1UFw2EyAUi3HhzOSXSuda/hyBCW9eB1SIlvxcQgnriYI+gESxOw3QxDRIYQ5hKE4y3I5n97YIVit6JnGJic7jzbZPSvyCCCB8m3yPytIgnk42rw9n4JiTCH7OhCMuO9fGR7gLfx0NuD0setRZuOUtf2SESnd1uTEKT371y3GJvQxQFexOReAQl5H9AgSh2U7Pb6+8u4PKjz7/DXejH4dYEitX4yWySwdZ7LQnStrN+1wCD9sP+3k2UCLeOwqevjj9Q8Pcfdg8yZh9f34pmFcXU9rC/02RJtgz44u2kvZ+cZ0NbiPi6BtZd4T6U4EnAxjfnsHpMMn6yHd6Bjfyw9zOuDWKpSTiz9TvcVqxex8qs39aEiOK0+/j6rKnBlfR7PuB098+2RtDjroGRPFep2zX/BUrouB2K2o46utMo3AX2TPP9EIl7TnyZ/i9s9l16J2lyefvzXWk49I2fOWw5mHRsHTZOkzEBQvcFGucqmoXokLe3ievo2mXctNCTb7S7F0iU/L6D/ICzdx7frG89vrbmnO0uoFvP0WSH6Yu3o2d9SbeLudZ7LSoTHRluXPmfPyb5eyLI9+++/PIOJU8A0hGfh8H79kwqBpdZAt+ewlJUk3CimfRAyz7cNIPnDhbiMRI2hOO4FRHho+3W24lYch2+I8uEQhSj3TOQtAuXjYOQCy3Ah3iGxe52RHDuQyCkd/zlPAln2SGhrzsNzgJKK8XsNdZQAma6T+lNVlhEtEjpMvhVAgLdMebDTbD1RQ+i2MzCte0a3BsN3RGYjrdz/vU+it4LI5qAU6+Af4ABL4Kv1YwgRrSAEqzxcUPYbxahv5fIUAeiGF8r262kuDNhRirH0oP5HL2rKDGbNM5Jkl4Uwx44izaBo7/clbPPZYAcceKD9lAaMROJFYvxGdhIaUSklIFMMDQIU/EYzq52FM4WYfC7fthPoVLfo8mvmQBRuuTyFIWSlmwCpkPtb0OsPwsQaPly6ItwE7UAyTJnpl3bk4x2dc4HrodYtBtCpDVXAogyAeLfgaNmGuI7y6fzX57j2cJC0QQI0u/NRzeEI6+z1e1qySGKxDiavu4Mx5/QHLkRjT/Jtg+tmInvL19sfB2Yab3eE8Ve+CRt6qEvPAOefjQTnQHPIQ1dEQyynymG7nIPo/r2zkVHP5nWdmiLvuf6GINAYxARIiljxjtv08F4U9GBUjTvs5EyULiKngSaz665o7mWXlxJLIyWAKJ4X+q9wtq6iGZ8AIPMUDsuV0ALp6FEDBHDYtFkt2AiXgGIab6hNWKJD6JFcEyi8RRxJTCIhHLk19DcHqMYWwyMn5UBssFguJ2EHxFF0cTSCBpLuBMlqBJAlky/3fv4k2jBdYdYWhdg0G2ICRBfGSCi0stX4cUSQLCGd5dPr7589eWi/wKAKP9XQ+9C1jqAnKc0it4Bko0jPp/vI8sOFJHoRDWC+EsRxEZ7o/OeYTaCYwddrnusuG3RDA4d0JGz3keQnDIBMoJmLD7FSALDTB1X5C+ZvTYHE42eey3He6Rno74eiIxER2KIwHg+cNeVRm1588fxVRrsQRTXI8i5K7pmIIJx6cjPdidJ2y3QEJ0mv40iGCo/I7BNnftpXthws+I0Q9UaBy6UkI02nmIwEi11cAf3EprOqAmQc7tGxEyTVaV+lgA8Rdua3bsInc7WbUP7ba2njK+VAJJG4ViqmG9Nj4V6kMcIUqR5EkUs9IF7I5of10td8R2HL8sAmaeEIPc+qgwQXZ6/ia34CJCk6bdnDf8pSnAdQVN4ASJeQ1LnaPIf6Yv30Od0jWQbAyVAkesufypvEeTPAkQx+fXX3/UjTwGyGLWIxrvCjhMRVLloa6R1gqQHowqQZma6KpXOnCtYuAhbUZS+4JpIeFCC73sU5mDHhSYz1MfIJoaZhK5pGeAyj9ZMdPUhgAjWEb/ZsXEXIoqA/Xo7AjfhmOL6zIwQmuwtSkintlCKpK1DMb5F2m6UAbL+CaOSI6FYT37q53rg8kcSXpTCu1sBSG9y7l0GDrdRiNCyiYWNMkAC4Q50CSAxFC39WAiGgij07lDpELSdkE7vWc0IkgtnUNo+WTHfumcdiqAFHMUyQNwJLOyF2vHtlwByzE24XfHj7CNADlyZaLm056Qfg0sfBkbrD48AuXNX/C5PfVzzYAm/NwFSjiC9W2YEcX0CHV2k4Ie21IfXjo2/bpK+OHCqauQUa3msoSOY+nqHvsZlRCwst6CIdE2w40VRHIeWUThyg/MYwdAk7CLMxq0INO+i8K2iFMMLKDHnIF+l4doNx7tockPfw2BjhPN3OUThWkcwxFDCYtyilXDRqhDBc4BCMeCHXGgVa+gE9r7opEkU2x6UYj0PH75Ikm42oC01zVHICmulOQiKo5aWSKkM4TJ93QEIdPdx5Kz8o63dS1x09yDaQn8zQrY8B2kKTaIUbbYcitGoBT460AZ0xAMoRX9vpQTvFliHTmHx242y+YauQbwl9Cr8m+UhViKlhdVeyI+iOTljwAEToUv6wjma5xGry3NoooF5c8+s7iAUw02IoGwXEOxexCwm3HuOEpwlgERLAHFYsCcg81WSYDhG1yQsfbnAjV0J4yMIxqvPEvlLqtzWLSpoVp1wFFpfH2lOwH7j8Y+OBFd2FIONOdJDvm0p+MG2CZOtkOlqOcl6NIbTfeLzmXsVEOgauW3xjvGoWhQ79nzeH54GzwpaOIgeforuIKxGT3wnZKIlLfzgvj7sSrDhXl2P7iOiWAv7PJ8D7MWzlz7nNTPN41lfaBv6W058qTmUIjB0fJjvHeBD3ICGxvfIeurEN5JKIyJMfN0LRnioCQrRz4fRJcyhvuA+QFrycB36fOn+AWuv9959t9UUmg+dffbMdJiTXHXmPhm3faC95XjVnSfpOMl3daKkhOoTNP3xk5GR1FLZ/My9+eno+K3rPYmhw1EcBYwR74mnOQPOTTSHWfbC2cv7PpH+Ikb8Bk3im/IeJ0yEPScxtlKrs13Lph8qPo+mEP10GC1QQpMSvAdgeTcHU10dLHVfnuXdW2S+CLISWs0fezuJhT23De1d/hOfU78B5E9HkMeV5GrL4BzC1N1kW7AHRaR/4ChGbBnBempAZOeI4CJ0ZqDne4S20eHRKYSmg905Y0ojCLHC/lVTrVJFcl0tHU0gLKQRFMHN0fJKx/JacpB7LR/vtRin+/tTYJnfH40gIryf3R0tXMfT9I3utzekS/OChdFpESaK+0sxyiss+4WGXBDruQJ92gZ6fndZD1YWxb+fQggsI4p0otCHomcRETrbYeKmCVn8mDztgI7i3YLpviDsrWxdKH1uMX1YTh5ZEeZG93/QzBzsL/UgZRwFUEJnctK6FyubN0rmY5trB03o7zffsxhE8X1yo6Mkn0ExtQDBclc6riyct2NwY6uk4ZMZLVqE6eRkDjGbCn2IIpMYLfndGXvwW502gHVZcc9bmOjJ0HSvSzp3N3S6AdL7RQvWwvDo9Ntj3hfa3b02B1qQZ2sv1VeHrT2vjSCJM9SDtPz8Snqtxoel5E00NF+gyuxttgoqnlioij+xXr2UR5N1hn7B/XpvarmEX7hd7/7PMtT7K4KzHyVPWeVBvs7vX/iYauV4W0R/WYA81PZ4eHGqWn0DUULpBqJACQ+tSj0cq6Vf1dOwpOjPYphtVRapsj5oqXvximRz8XR+fFxjtigaQu3oB35BqpqQcrNQ9cT0qtwbKozVF58EpGKrTujBAVU9R2pdQwSEirafM18x9iBYrb6gqPVX0XB1aLc+IvOJBeHBg6oCocZM1XjteVXL//196n8sgkDd3h7Pc0iF4/nMhh+WUHUaqjerWuqNXH0+XC1aeLBg6W9DnvPmWU/k2fyX+rba82cERX6+/dflQYhlb2NInfFnXPttXYK3NPV/S8qtIIK8RH7207HUvygL3KT/ZgL7K6OXjCCqdhSN/ImSrVWFf8SNEgnyeC38j8bYZgfl1Y+EHuk/AhARxdFnxCRqN4iq5VhZqcwlY8Fq2fwKk9SMuyb6qpoqfE+4KjL1Kp6I1DBVmanqEiY3UXWi8B94nfX/AfR/K73UJF00CW/pWPqlY1EpKV8gVY6zY5QSpbl0VrJ+qlzK/EFA8dFvXpd1KIFarvJBamel5UukRqSGSZmtLMQesyZMHj5lUXXWSydvydqvml4sJ12x0/vwL8v7PCJ1D2BRfP6EMhsaxhCpz1mqcrdNIMiTRuq5K7+1ok9FpE7EN1i3E+rJMQoeud/KWr7RSwFEuOr1jiZb0Pvjfl+EhnXb5IGoHY/f9wEREGTU758/PMQ633E30pPuZNSs4bRvsOFyDLeh53t2zrYzlUW3Zfg+fXO2NmNNHic6YDcw4HBdgN6wFvPvCV76W5aEjUUUTfsx5rKOsz44zxycrTW0rcwmmhDGfnQ4LyASmLo9m9RyExoYDSLC4N2i07HdBrezEFx1OfoN1FWwsH4bgZ5Lf++t9Q0lr5depvzB/LtCZKAxi7G19OEwxZQ3+mlbLGtLH85sCnVPJEOn0z9+sU3M5jvcNQbG8Ryj+ehgMn4UsI1gsTs+3vi62hDMtxTxpdaOnO6RrYPULGTDd9ObXwRo8mbPNoNG6mz6ojXBig3F1ZCKhDansjaD7L2IyxQ5Q7R/ZCrxboFC4/HOTndCrhtHzgZRirmv1n8INI+XAfJ+ezEQX0F53dsHx/Ec3uHB+ZWON4C8XnqZAjr+BAqXEyXlKmH7TkQeS0siGNFz0K0/0hbaQpM8ozPagUod0RyAnlCGrgFEd22gUIzmIe+Djne7mPX9xg/RXHvQ9nU0uy0oAq2GWeUse4svgVKpA7J5sH6xj5mbctCLZtXHQfcMLNlpS2UQUCwM9UCwe4rVWbQ5NGzBfF2Q5iVCC689H+K100sABCMawGC4F9Kbt8dDUyR60cJe4nZ2KG1839kpwXA7Gs9nxrr2MEoA0bYbfmhVucb8p8P1bzuxL6DxL6FQ7Psgu4nWqU4IumfwjGJw0IWydWJhZBiNNb5I9oT2eAR7y/X66pcrOO/QuisAGe8M2/HVsx9TzRRcGPxgl4nWQRSiWGwWJWJf4noWpc+3fvQ6wXuOgTPJ6ND6wtsj1NdMLwKQpnJpST8H0eGlndAUu70oitGPS3dDwYzd4Wjoi8+gWT9kzD6BKgGEAQ8jl2RCm0uFpaM2ZfuAwjH5CJDxAqKiy9BXBojmogvdHEEzvoUyY9JFil0/KnVSLBQO+vBMIjraCZl7kcuWm0JhMsBoFs25nZnWSAUgbkRwj3I9gpH3J45GXOANoHAlkMh26+Grf6P1NdOLAERSV2gOnXQdYKYAJpygoxuYeXGCkIvvoWi5rgFInz1tW6AtNWgy6GYTIDURpIBI13IlgvyIZsVRAchhHk37UBptm8vuQMskChETIKoMkAaSWZSgygD53s5YNI2AYi6eo1Sok9URrsKGkGipAMSZQAlt4aO3YdbrpZeZpA/bOlh45yG1QsPZV4McxZvE6EowNvvFHkpEGB8X5r8+YSJVAYhmpMUlimt7jpkF0bYagOxkzQiixIwgzTOMdC9YAu8KGLYIinQp8zU7jqbf747B5LtpLAvWMkBaKwBpb9xERfrYHzcjiNLxGyyIYvrLYWvbsc1gNc95YztzISe4zQiyScBKe+v5G0BeL73MOog+izpmVw65iDocO+tTWF1dHstFq8Oxv16pv9ngsjtWh/sZs42hSByiOf2ugMI4C3vtWbS7BJCWycdJum8JEXsnBL0z+K7PbNEB0O6SOi6avc2zVhSZLz6jhJW4u9mdY7yIqNQi9DmssJiye1s3GPWh+aFZkwg3X6FKQ6wVb6olA9vH6M9RR37nGhxzKDy7eOx++8DbJOQV08sMsURi7VoMoaOnDUOBbp8QOoLmhZg/uiemtIFqUAiWDgQ9oxEReuZiGmnTCG2GyWuxgtWCSIMG1abwFGlvQipcQlN6RkRAGgxTxcxc0ACr8SgiCMZ0xGrqEnSDiMz0GOYcxEvbhCB0WBGZ6NFigKnXakHHetre8PGa6cVW0pGHpI3K+cOFPOF4CqvftFW1COPF2tQpHkwgVSvP19F5vFQsOh6u6r2St8yhN3oJgNQWnjQJpEpIHQf1FRFUXXt9CVehpYB+OH9anrOqQp6IPAWgVBHLsp36SqBUkfH2uskrp39DPsjvJBGmY8hf1v+3hY43+l8B5I3e6BfpDSDV4md/CQny6rd+eqOf2KdjIgAAEABC/VubwN/1oAO/gsBKEAiCQBAEgiAQBIEgCARBIAgCQRAIgkAQBIIgEASBIAgEQSAIAkEQCIJAuBxk2Dv3p7SxKI5/j+c6CRBE8ckCQUSFoFIkRcCuj+Lb+to+vbuuorW11o22af//WQwISLudWd2d3RnzhR+Sk9yT+0M+c869N3MPgQh0zzYEdx8eVz/Ufw8IoWWzK1DTQrUjJlDLrVxT48rf0A/bNN3T3au8upXWXP2rEaS19CAah4R/S4TRJe/tks5uVHHVov8BIAQey3gAGkskPHUghhOJTlBV4Fx+oYEIgXLxk/1rebHf//xvskMQpZUFUNPA2DMmwQ0WeezoKjwTvDseBJFIuBVAXP2jgAyPaKvAaCqqvgETiNCdVg9ABMaqXhloBBGCiJmmtKpaxW6H5gMR3UrI6oeEVjtANeHE7FgEN+4jxry9C4F62/PuoiWlMbUNanHcOGmeN0NcG6KEGaUYqd/R8nx301FX9wCkaIUBX1TTf2IQMZ5qqrkCImLsmGmtDG4A0mUMFvrn++dziPdsA0Rc+zOoniNxax3zpt05FV9DCZBzi9OEEbJfgutv+ktTqgN7y35ZNdUd1BvXPLQNNgQTc9sFRs7Qsq2V13Hjwq2Q7uqugETNMDBajE0ZcTAxpvVB/RBOmc6h2J7cbQVE3q7Q1FrX/MZEVLc3i5uDBYHQ3pBRuAGE8XPFmM0xkTfcCWpxTGBx4+7HT3YA0dQICG07ZYOFi4erOwNSuQZEGSzJaTDB05U6lmcgYvwuC6u634tbgAiqCkcH24Lw7HQ4W+rp/pQHgWa+FALdO2EQY/0s8eRlT8/HDVBVF8tdQwO7nRh9+XEfxPnJ/kB/KQ9qAEKEpSEz1KivQFh77/M9flRiwuqePzkwMQzGRl/BAwKtdF0BT7a3EP56uuYDgVoB0bJA5+kz/D47EHoddALhZWFq6NHjoIvIQ9e9AEmPrGu9HjDCcue1vQciQsh+g97KFpgagFzCw1VhsSPlJXTbO4pM61K5JmGwQ00pUl+HwGnH+9i13TgH47gilaSl+DCn2B8AX9ROp1SpbkA0IgjjhankIYhZCCauOr4M2HYv8GvVecqQgTng3I4GQaApexFYtX96KS0p/VnQN4Bkbf+KrSmWDDGIDywrnZRD7uD9wetegBSL2Z7KBgQ+2VsTDiCIKEoOj53jthSLcVkZ9BBmDXM5Prfpr8yDcfHrGA2fVgKCcazrPU8XyoHqCS4q2uO5pfAmsJQytsB49mIJYwUZQjOCMD7JgKfxqjOWtXT6zdYq9lW9NCeO/PIjcFUZ8YJAvfI3YENRlcX84ohc+R4gqqo9SyxMq+Y7YNFSny/Nja+6hREevO4HSLrztV0ChoeSonQNBeON7AbyWjQBohogU/rA2exKYQL4zer1EJatPh8Ya5WRUTCBGDlDyQCfrJEEBN7p6QyW5SyIammUvgWul7qxprxoSbFOZT8YkdnZ2eXDIBCqFMsgxq58JMB4oUcj+GANOYD0yRfAhmq8gMClHs3gO4Do22CIAfkS1F2Fi9zaUq7uDchc1vB7sS7/wGQVEAYPyEUwdcs1cB2QlKZLadk9N4DM2h8hBMYrSR8ITzbOF6edN/TYDkEw4oaaIL+15uROTUAS4YvFYz052g6IQLnqvaINA8v2AQQz5uVbCMZM1DzH+S1AtGIEAk9i5hX4G0A0owwWVS8lzI2Y6xDuJJare6dYGfRYn7Eix3GdYgmsaqo/MBgY0nsaEaTLms5vhjfj1ADkFZirgMR8WHpftCq6odYAWQE7gIx5ohWHipsIgsiyYpm6prUCwnglfxJAcPPpFyM5jKrjEpgIAdtZnPGm5C/XgARbAIlmWpK+dkC0XG0WuYSMqh+Byc2vXN17DIKf7dKo6g/WAflkKlpVqqrGQdQ2BmkDJOnDvBxajHg3tDZARKyyDkYdkM8Y7ZV9FxnPL5VYExAwfjaLM2BihCvRFkC6azNrnUPW+g0g3i4HEMMBxOv0qDab3AYIsxNBEml9vAaoO9n70HVPQCLIab2Tchp4XgUEvqnKxMJMNpILVE3cBEQw0zeAREVWM95BIN4GSAIBqwTBBAeQK1yZylMIfLBaACFCTtG/gtiLzRZAGDuyHyQQ1tSnVUBinRDIpy0ngihxeLBf1K/+MoI4gAz7rUnn+e4o5MHr3ikW5o2i9rQOyLoZGwMRY1L2ekH0wwjiAFKGwK6u3gIkgh1rKA4S+14sjehX+GwWx0BYMZuA1AYhlvpFEGPcjLUAEjbUS5B3WT4ilDVtDSzOdNMZpJuTEJgwk2NA58wTgL4HyFvgzOqKgDz7Alt/5N2prIesOwKSdFbSo9EMsKhrA+AaICtyBUzEOFGc2VkQhF/+cguQlUaK5R1NmoV4+aNW1CLAqxZAMikrdrjXm+zE3Ij+GfuacZpbDWlKchQINQHxzltm3+xBqEvXbgABEY6l0X8wJZUjED+SSmEvpvXZi04E0UpXj9NyB4xD+wBEjZV0ZNUbQHaBXNQaOdvzp0QwZg+6gDxk3Q2QTkVuAqOKGgHGivI1PJjomEVOsdbruXu3fViPICn78mZhz/Z7CaGOrw4gMj2MNc2S0lgv2BFgp2PZAaRiZICZfk1KPeTBXNK6Ah7rUsr0Vp8RBPo73t58rAjPdsqUUmpdh55rx8cQIIJ4nbKk0l8GERKFtGX5y2vaO+BID0xLKSvzPkD0Whf1bu2behbI6qYzBil0vIJAvMeQUt+DGJTdcLOsB6y7AcK5uBfgXE6AKBsPXrvJj8EXz3lQy9yfxLME55eN+0BOK1/VRkjUvoYPxnMM5Ce2v2Rwcu4FFvIJEMFzsi9A4Oz4UUYAPHMSBNHq5PbaEspbjGr7OVDj0ypfeWt8NeIj1B3XrbmZMQY5XU3ksh6IYUE4MmLB/OTkuQeMSHqk1q36EyH29z1odk/MjJcTgpBdW3AjyEPWn+ydiVciyxWHv5sqjwPIvgs8VGQZFxTjjru4i7ujcY3buGZ8Ht//fyINCprJy2ReMmNO+jcjdF9u3a7G/qyq7r7VfzhhCjH+V9dejN9SVBBE/e5dhdW1t36GqerxxioKEapbUMZ1kLJNcfGnE5T87k6ZuYamvj/lVlVSbikvv7pxnfKqYPyTV7baG8orCbNlU9WuKsXUS3REvfF7ndD7CrRKkCpcRkkxAIll0eX46+7mF5hVZRNVDCvFzFveTf3/zGqiWPg4mEUwZN5HYsoE5A0gx8aVdHNuFFMmIF+RYG3e1c+AIObJKVMmIKZMmYB8mwRRZr/KlAmIKVM//zRvScg3XyV5KzHPn5r6n9D3AFJ7iMtrFv7ItJ7mzbOm3p++rwWxjE+PWkEE+R0+EKFu9KstiKJvzfLib16aMPVe9T2AKOYHQ/HO4FmCmmkMqfMgvKxVAPF7FWL4KCUv3qK4bvCgyoaXEDKqTUZMvSt9HyBzsZ7d2Uf7h0WEymGvuLxCPa8hgAi7nW2LKBFqKMDwfoh5qs6Vd4t72sTD1LvS9wGylAERzmM2RLAmLAjRwblEAkElmyqEiGL7aKWAEhIWtZCyYZhtCYXiYdBiixqO0SbwZK0It/VT/XXmzbOm3pG+E5AWRGla20ag3+/0teTo8TZ0hlZQQ0FvpyuBgAiW0EVf2zRC45nf6R28QJMKOO2dE/DQRqQtiqK/fkqveX2ZMXWR/mCPb6JMQEy9G303IIgo/GGILmXV9S/35AfvsaA3F6zjjmFEEMV8zEbnJzTOhhR8jmuY2h9X7Q3dXA1aaelFk+vk3N1qPb5QLLdNK2V2sky9I/0xQI6CKEEEX5GmwfJMICh2HCBPYmwbPgURHDNojj8mDXesbVdPgNhodyikswNXGKNcpM1m4mHqXemPARJ2I565S5er4bECCJGVMX9LwACERMPY6tnRxylwFNGc1mdhtH3Y1dWQegKklXx9ilR9lOZ4pphAsdhmwzyLZeo96bsBEVGiW87wBHybkb5M+xMgy2g26nsfela8ZX46Ymvh8EH8Duw7JUA+ZMm2uNaPF+uXnwDxwPAMly6EprlgwwZmC2Lq3ekPtCCKzb9OcfixVMRRAiSFWBpG0BR9IILq3EEplmI2HBsGIFGGQgh1z4Ck4omWdZSIMPHLJKk2G+YYxNR70ncC0glia/9rEQ4bmmD/L3vY2ibA8mECkukAiOKhPo/W2AYnsD+i2W2Lsu1A2PrbIldpD6IbCz4P4hEh8csyiw39Jh6m3pW+80LhX4Jebzw+h9Dq7DxxD7s74Kb+fItiw/lR4MAtiDBWQEQUN0HSHWia/xqlP914EjgIXnD70VMKZDxw8C64shZfU1i99vMJ8zqIqXek7wFEyB7ubx4eWxARbHtb85ZEFvT69jXysLqXtTQLgizkkScxOivL/Qi2eSskOnqXpX+a/IVG0dcwiSI5t7oxqxDqPp2ZExmaek/6/nyQl4efIUhloeaFl4XKKvDWQbEVRMRYNp/HYeo96jvzQVRJgkh5WUQwFmrWoORQ9q7ODPTiIArNZMM6qhyi4mFmiZh6V/oPZBTK64fVinybu+LWESq+LmR2r0y9M/28lFuhdbLJvC5o6n3rRwNipkiZ+p/SzwOkmo/7+70rEb5FZhfNlKF3AMjzqFqQf5+J6nD8VQBBeAXLK8eyQWrt/K7vy6o56jf1gwH5/v5R7XTtv39aV3ibbGgs1Nr/la/ZnJj6eS1Iz9LS3JduRBBDVBYRqU0zpxaDsr1vYmR5FKHudm8/gUg1Zv9BdVWE8f29iELwbLb3leNMjiNC0+GnZY1QlTC6v7eoEKGv/YsHKfnmESzzT9Xc1GYLYurHAqLZ+lgYc6fHphHUc+dHlf7zQoWC6sMRXo5kdyY8kzmHw3RwbSzWUXN+l0lnFRDFl8zMTfwAxoOum/QGCr3913k0y52FlcyAILVTSGSG70JHKHZCK12+UUSt/nUfTfaja8A/YzEBMfVjAVHkCigSzkYQdN6CgKAUtbMz2MYFgQorgGDxha2gm5j6OIGir20P9QJIsxsRXnBphkTbLJ/90BeLYgscNO6j6DkGW3wexbOEvj7ID6aIti1A+DOt7svAHJrjoDlBtamfAsjWGEpR17YO815f5wRMrLe7nVuKlQiKqRutTuz2QDfMz18H7xABUeylrSglinAYpTSPLQp5Ocy7qoBUePPN07KOBfcGTbe4S1AJokvrCoPDqm9wiUcvmkhGW+fxj6C5akTMCRxN/QxABhBRFApMpq/UYX0f2x83mhdjOxz40cwMsOpMWmcaYWPwc2r3eeTsP0eLCCq+hBZFT8Mp6muACCJCNJadju2iOThAKfwGIEpoCs2ias9ZiZBI93EzjKY7HUUzUAJkrvE0EjUvtZj6aYCcBDj/FY1rhe2uktlFczyJLR4hMwX5til24q0IQCVzXQmCp/4BJcJ0w+LXAUEQhX+FaDqLZiiM0gYghv2gYHi+8g1/hvMDNKPpUyxlQFLOMXf8xszAMvWzADkfwx3ranTX33C3jYV2FzgfWXKQ/RAMBBobFikOo1/+zHt7y4BYB68MQJINC/+0BVGcuRVZoz3YLtS0IOwErQiK2bPcnkIM31xACZ/X0IzHe4wWxPAVsrE9cx4hUz9lDCJ09hLIJZpPe6ZZWUXT4YJPAdy99McjPc2n3VaKay/TLSrCY2iRUsEiWjTLHxJfHYOUj/kuq+BpiaAZ3n4GRBSfvNNlUB6G13Kq7FtsbC1vXtMcGq8AUvK2UHSb10NM/XBAwoiivSHK3SVKRLGyhabdD3l7yt6NtXMZhSg6DECen73818mydas87+iYH/kaIIjQMaAQKcEmunP9BRCW3K0INRJhx68RRSTugT2vgWIJEBDF0bnZgpj60ddBVr1Ti/OFhnXorl+Nnn7q52AbC8UuNHdtBWN2k6vs4ogmN4Nm2jWJIMJd/Vx3dP0Ya8Cbik4NpxMIrwCp8lG/vJBKTZFK3ycvvRpRuOfQLDWsT6VSxyCI1sqIuvHh6sl3EvwzyYe2LwZMn1Dsz2f7c4PN5hjE1I9uQSYczmDjSj8iTLk7va5uip/QTNyhOM48oIQ9uz14Iszl0EQaRhEQkTmvw+e9Qqw5n917kEX+SReLmWCj1+k4h0O7N9yP0UhdoPjNG/A6fWGqZAlrJV/7JTQV7M5HKflur5cACdqdrmOzh2Xqp92LZfy0aqTWWPmvW6VsV5wNo6TymcdaXlCe8jpvAamVVK8/flN90PKqLlbzhnpTP+0RbKpKg9RmpJdf1Ytd0b6AQI0VUZWVf9bFkrKobKgavazXtak6U1OrShizBTH1cwCpOFYWBQEpr1d93s7GIIaQioAqIE5qDBU/hKpfDX4A/9IXETHpMPXeE6YEJci/dLJFzL/1pt6dzMdAmzL1PwCIIOY9Iaben94LIP8oEeSbwJLvCv7+Mti/vivmJBn/rt4/IIIYQr6Syo7Iv/e7LEeSyvt/4ncuyMvkdTVBv71GlVJ//ID7nmjy1ZRjE5Cy/icAgerEin/wUBaUgFR/5F/9+uXfO0y+qVKCvAkutaavH/F/vLF8G626IjW1MA/7N3r/gAjaav3Ha3SCuuhNIfJth8zQcaXd8FgwYtlsXzkcFPs7iPyb9UtsnZxaNLNzqKZv//Nr9SCAUReNVE1/SII0KQQUX75hV6pbN/RvVULouDBR+vmAKDbafA5f0fI8yw9iLDBkv/uEqjHJ8+uraXswnEP7KBEiLmfwNytYVxz24VFEXveULPzmR5UkgqdHVM1Ev4iq3X41fqv9qPc+M89WkOPYKOqlmqpS1nCtrZOtH83RWiXfC098mbqS6fLypfTLm4jatcjL1t5WxLDVfkR2sKe8KycupKb6lUXLrpJns7GiOr+87HJPq+J8uFqJkhmp7gC1X66mMYfC1A8F5B+nqtIMuae7Lwa3Ua8m4rHFmxGpNVWWVLUTUzX71lFCPj2nEo4t+DXYZBsbeG5JAMPXuI/l5UhL3VEzVTz/ZOp5xZUD1MM47S7qlnWlTm9bvJo6KdbPUPT1PcdSqXHWh55NwqsRklAX9ryYEZCvVuTFYF32GEFZDVesr8r2zMDLXjUfgaTyL/s5HIW+SWquyb7ZgdrvWuHqMAH5wYB8pRusOCugOYxprI/hk36IdrfuLLEcm5/y0PxbuLcO9LFazCXy/Yn2nSTHvXM2BFsxvJpAUBPhlaz3C0qx7NDChhNbOgL5eD+aXBFdOSIX1sJTq2H0xUq4aEPfuPr60Ld34Y5WBEHtRx8HzrJgPVb3uSSjxfBNMzJ90nL4IH3TdLix9imyPeN7xQVE5OIkN9eRQgQ9X4mSzIU/n6pCoa+ZbDIaobTVHvpa9bBhiqKYPC9MaKFvpXBS+lzYzESOrUTPwtsJBBHGv0S3wzsemPKc5hbg9NdwbprJSQRZTNBngeO18PHWAIrU5cytlISeGD7qmKbonZpSkjoJr+ZRvcGpKU6bYPGgcNZMKnS7YM13o0pf6+o4PdvhlXtEhNalg8KSgsm64+InA6iL4ctuf9EE5Me3IHrHn2t61YKchdHMpxX+wP5wLMuG/2jg05SrvtFvi7QN7Q8EbdQ1rrgOkpuZy1W/b8vfG2y04HGO7bscNvgcWtpxfbhFCU0tmzT5PhGJ1yF4N9EUO1AAitsPW5tHsQNGh3OHvgHm0y1d54wXcof2YUQECQbPNsdC42SdK667pMcxsH8WW+BhLD40IrFbil30x20sdRZWVuonYMt3NdIQbkaEfKH30DED2Xh47tep9bbOwAk327v109Aae6Bl6tYwrZzDQyy3NzjEbKa4uTaCCD3BNrfb1p0++HLQkkUQegbHOpY6B8D/2X/5wOLg9n7YLhMZJXTX91vTWS7qt/YvYwcwl95o/zCCEuEmMLFTSE5mYu6w1mvb624nkUzaXcA7z2bn49Lwfavrg9uZzx1Bqv63vZPxaGZ1/6YDEWFybGdpsAP8XYWcuyUPxcHHkYH6HROQH92CKHJ/+fiXI0RqulhhdE/mN74EUAysMPfLLIpkPArORxTuIq2hYRSb9Ulo9IItnaIjjMLZTvNgN0T+fI1COI27M5/gPiMIXe0cR1dWslM2RMC7g1hCBygRoukkq0fGotAfny47nKEIbjHatoJi1YWmPQDrPpDOqxIg3fZWDhu64dGHNZ6Csxuehwc9T1EOwogoPp+gGTrBNwGbDgjOlrPxz35FnBcwGbPuBFACoFi0a6GwguZgzahRtj4FyfoIbp8HobEdjauX0CLk3NQ5knjbEd1yic3eB7cZCwKZCxSKpS6kJDzxPvbcKALX5TwwIZoZh9wNeDtQin17TR9TcegDlxsh2M5obBGiHx9NQH40IGhnQ1v9YBM1gPQ2OH2ZMyt3vpHinNfJThdKk0j3kwz1YKHdSWsmgoU9NxZmttG4b/F3PXmHwiwFUdSl51EiLDUWu8JRrgxAXBv5xjG7Y8A5ixJG481owjMwfbu3Go+yPYwWRuf3huLJMiD3WFjtIh8qeXZ9wsLpYKJ8HGWuDUAcrcwF0EZfriUFK2GUSCVKHt8+WinW7rAwtEKvG9w5lHeWy5LpbIXo4OrORvFvsx6H/14jSKlfaEU7lrFw0aIRob+zCY2zSGOpCtOhUyw8+kr4aPsmdY7R0rFvYTjMQn1H++P2n7sRxVws141ipBEl2K72irFjdgJlQCbjR7Mi9IQSkPtMIt6DVrQ2BuYtz3PC7I8cBRXuESzMnBBpaUUpe7sJyI8GRPD/re0Xh64FZLXrtMeD5tK3enIydEj7DEpIpLuJphNo9h20OqJoPoWxMPwrCvcFXYGzJ+8rdgKI4DhEKW7TeThvNH6/QuMeVnqLWAQpxcuiOQkz7zg6W4tnGRpGGyuX8TwiEFxEs+Mk6ahD4d1EkYztlgChBpCRMTT3Dgvtjk9FxxQiwrrj8uwoNErLA0oUB3dohn4jGk8kYv2Id7bEjC4Bstt2s32y3ZtgPGd39iGiSDksWEMLaBbSHgMQhweFf5XGCzTJdBTNeoaFkIqEbDR1Tk/HSqbtAVL1Jycn2x1NiAiLhdCJ1QCEWV9haGVwiscAQuAKun/tdGVfAOlJJ40Stg6vPWIsddg/b7mciq75clL/tUOjcJtjkJ8wBmm2f0hfoV4P0kWUZvschagXQKLk2/qwUAxg+0dAwr0oUOz7UDSVWhDFzAoeoi2jrek+xBqKoNnKoco1j/ehKRwRP8SYIGj7CPHE56E/XQbEu4RmZYykowmFs4iFvtg4X94AMlABpL+ruNOPILSmL6AnPY69PIPX2gkWhn4F/9yEG5FSC3JSbkGSmW4EQIRtnyCKB7tGheaxst5poNydLoW179F4jaZucAor7Y3gTW2tQZNj1JqeRDNcYLLTVpssmQw98qkLha8dPPFjdtzoEiBKUANj7LbkpQRIMtZcOXNBe4sVRXNbP6zb5QWQSKgVJT6zBfkJZ7GwTY4j8GoMokQUUw0RaJpm4wgl5THI8BiMxiew2bMlQApGB6AMyPyHXZi2kay/hZG/XKEUOw4LtPsUAwew4dAoDtep5F25j6Cn4Ua3LaPX6rMUG2G6bRF91DZebkGcVpo/fCFpLwGymZ6GgQIcVsYgHW5jDDJXAuTBbuFuGyUiCKNtESwzg3nOHApt49cxNGcn8MXVNYGS4Cy/+ctjEMZcgk5SZxPmWxSl3R4chS2vxuLdKo9BGs5g6UOWwDVKOPJDXWgOOgacKWiyJ3DNQH/DGuK7AUseBJXUQtcWX1o0qmUOWf04yWangsA9SY9QdJIf7IPcHbhnwKJtdTAbs6GYrR9n2htUuEuAzAxhDW3A1d8+mYD8CEB+/z4MxepwxfI46Pa33NJbAoZEfTeMuoIDjlWwhaJoNvxYGLhB0XgLWzG/KzMF62m/+y5gcKAP7OGAYwHGnU53ehFVu+GsL+gvDJ+TSw8Ehtz97MYbz9VWeqDrzJ1FBAkc+RvTQ5CM1yHCkGMg6K+DzRaQ9C05J/0hG59caK5DFg4/BL2BDYUIZ6UoriyecGfYvslCLLDCyWfE0xJrRcQReTEx7nwK6+IqM+bunDfA1V2OsX6Z8YV9axpB6HHcBJzxQwjeooQ6/9N3MISQaAgiNIWyZL1PuzJzDrud3gH7gRHm0hf2uqaZtnsLrUuDY4Ft1wJ5h3em1TnPYyYcsC/AUYvrtPcSosHgmK+nOeN3ZeYQQYU7B1xDAxach2gGfoNIyO06cG2YgPxgQKqZtLUx84ggCNmJ9WYL+W5EsF57EFTkKoqgnszCeDdCdxahp6n0MnfRo0qW+yk12lp5YMLyrA0RbBf307x+yjRNqZTNM4403++S15BcnkT67ntIakTAe2xLRRF0c2ldOL3t0wh1zSDNTSR7sDQrRvsRbH30hdcXF7/E91GCeo6iInMpD2QfmkkY9Sw5y2mtSS/PLeZRzalUvlxlbJGIFTm+2BUpGeixW3oi0wi7TYjxHVx3G47NWeOr0GB72hVrHsF6MTFbV967yPKxRhhNLSh67vsYt1JakZ4mLFPLkaaS98KyJx+l9OUuHWt2U6kE8iQsCw9Jlax8r90JhOTDrK57P3dr/4/oewH59rbldy4r/s7jdd4+MKfyU1tSamxIjQ9SKYxzFlUDlNQEeCtRrBkjJf9GuUzVvRbK58hvTVDr/eaFfp8FkTdBhNfRakpAbYBKzas+vPrsTSsur6PXflnmXY3vA5BXvzelRKiZUIGy5Xnl1UvFu3o7+nMERHh+r6rqZ7wZQasrItASQb/YX2IhqmqqvCGaSGZ749HvauV1yPJ21Su2a02GSzU4ZYvx8oz8adqCqhJU/ejV8+OlNlp1qfJRtT4i1c9eFyvX4blwDeHPFpOQ9wDIO5HAZhL5ZneheyfXca+R/3hFmibMdMn/Uf1XWxBq/pz++Jy6t9F+p0LVDth/NP1IkPf0EFEzceR9APKGj29PnRX4D/YB5KtPz/ndAZCoJ8m3HfnV3KVveWipEt5VOq05HnkvLYgIsnCbQL694H+3BRERpuajiHyD8x+rrYjQt97zblLfhfUHE4qfD4gIAzuo54QobuyufZTSSqBkqEmTejXGHdeKVNDCy0kYo4jwNvcIasvztWCU1xtvK9WgNp2JM4drpKZChhntfKASRmitQ+BtGpXhWjHqcVHsDBjGSqDqoFxe6l7sdLUjwtucsNoTb7XZTZVYyvCsFKOyiZcNPPs/u1VKW0afQ4nwOhMNo7SFsRtUpQaMakTMB8n/nBZkYrZ6DDTHxr+aJvU2oci25oHuR4Xw+vOvZzJRE1JqgtUa906Rt6eHhWys/02FQFCfXqyKkREUrxKh3p7Ybb5DEZl4u2fy+jxuXWwKqanx13bqdcVr7G8sL726Wv/a0rPbz7WV2q+4BlrjQSuVInotjwCYZ7Z+Qgti81A3rR8OkygOM+OjgmV96HEarFmmDi3jraNfIoqe/T5ESCyd7dVByp4dVarJeqoRbD2CdXPoUCNPIv94NtLDbjNCfgGS1vEvs8LpZsmQtOa/LAjNpRUhOnc2YgNbXhavxWZB6Mt1GAlFxa39UUSE5Xh2WpHdGLpWwrjNchExzE0WLAmZ2i/FHOv1NEHT3tmDiLC4cZjazxKV7H6C009D+1Zhx20bxdKEYFsaWvKAbVylvmSfD8j8p6F1LRynd6cVUqpk3fpVKyJyfzbShO6xgK279EGynJ511r6oyrFaIXuMYItoRuv09SJE28/WLcJub+9uZQOLW70XejaCILfdXK0WHyzkBlpHhWhHbhIh31p3uKjo358Syv/6cznb0Qkyvrm6kYe+zt1prRbaz5ZNPn40IIrwBnvumbB/MMWhr81XUNYu59ZAZzdT/mIwbD0bG17LnG90XcZyCJ9dxUYvu476YNDT57NmrtHcDdPaFdhqCYMIu/bLra4OzmfQ7NuFm/DwWuiuvetosAPOC4W10G8d7qPBdkRdjhWDXYr9mSHvDYELmEufFNqO2ew82XamUMJ9sN7nV4uxo1XHOayeXDrLGUbBZXadn11HgzlyDQ5Hkax97GxwG+4a5y4bLruVqz3gPlb+4d7MMFexmNfPnB8SDleuq9HGfGBtLNxWvk2MyXhhyxsm0ljvc08jis+FsRmnPQmfHVtOuw37A+T+3A/udhQq3JUbDltJ2t25Lmcd7U40C/Emeu8Ogltctw3fHE2znl65rF9GibDqW71prDMSrqL1/dvBrTV3621b3DtMKn3++cMhrI7NXHZePj59xUOIoLhoOxgaCG3BmbvXlbEmgx+CvmTW+Xmrrd18wtAPB6Sww9Ivk7AdgKuMUhQbUayE2W04QfFb3Ea+oQCpwTpEC6rlnguHRZiy82sBY1KE3jDYQleUSrtRoli5RPMlKBxkPGQ/rsF1zMaRw0r0l3OYT1uNYNb4LBd/3kOVAMl37sJqF098VbrmLMRtiH0EbC3XbH1cxLDjTBH92A6LbXm6HtGsDUH/YDRaH4WufSz2xiZEtBCNRSn60QYgR0coXGdc/TUF7XYQEQK9iLZP0JzOI4hiLd4KzlWuvBoCW1ye4Ql37jAdmkTRP9iEVC7l4x9iI4DmONNE+y/3oDN7KMFqn4UdLwgqHkEJnkwKcn492GOUHhpGSfAC9jutnMXqqKsfE2bb8gYhnSPQ/bEXpUXwTbDQUocoLdx2mk3IzwDkMYDmwq5ZzgjlXKXjmLXHSOE4X0Hj3YRRXxSRaCrVcsiVQwtTPvrio+w7NIHPs/Oz8W2UsBva7kdxZwDiFY6G0NjXIelLUFhF4biArG8cke7UffyKQ4dGEbhlPZ66iGw1yGFsb7zSEZ+Kt9IcGsXCwTAnAyhByoD0hxLQFJoi8AnRncXIxfLHL4m4jRJfFschStC7qcN0cxmQJf+TNYWVzU5ufaJYaGlFhHyoHwtbbuOGeWObM0NoTgqsBBbmF1xO9huJuOcaubYrBPF3RTQoxwNWvmTYeQak141iKtSEUkRi11epjY9JRBjqnG9FsTKDsk9w6b23YgDC6eD6/fLcn5tZWUPjHAGbbxcReuJJFMEzFIlUxP7IcUsTgnVysaPTagLyEwDZCKO59VUA8X1Bkx3M99gVioNeNL5NmPZ2Mx4OFML1ty+A4NzDvQpeb3ggPGCch6K50DKc4O6oAshwOwrHPCS9CcKPKDqvIeHNkxjrKgzUp9h0o6QEyNyH8MDAwImVi66WLQtiAGIj0uJBUQywMoR+AaTHYYW6lkkCj9CaDjxVILyA+3J2IxPF4utDcdrlGnYNnlJ0lQGxxSfRLKaZ70IzmzEA6Y/n0czZq4AUdkqAzHAULzxVZ4NoizX32ROynV2iRGjdcgRTeELHaCIxPjVWAFm9wcJyp0YU1w2lPblpQgS153UsCc1x63G8CUu7z76OAcjCh7GBgfBagrszNMESIMFdRHEcsqEZ2Ma21lgo1I88AVIH18FSz88E5KcA8nf2zsMvkSQLwN+7Kn8KSFAyyKioiAqijgnFnHPOOcdRZ5z//3fSoIC3dzcX3HNvebsLXVWvXlWz/Vld3fXqjRcAsomZrt7KbaukAVlA49rLAHI4qATrAzdWrRl1CVuDFt82eIZRuWl/SU+C22XMbKYBWc0C0p8GZDMPkJ4JEYles+bIAvJgByEzk4m2o7IjyGjvGCYW/dyfoYBXQExZQHZR2jqJwvAPvD85Be2qRfAuQUl6BBnElAaksjGCmYMoKxU5QKqa2zCn8csBspkGpI/bexSI4DmomMaxVjGMEhD0ZnMVoe+YmQ6z5cHMo+8FkPu00WoLWjHr0nmuVPK9+QI8051pwlAHpUFODqErbjEazEQdtucAqa0eQ1OxwUbArPBsMRMtYSh0AMGwqQjI7w1I3zNbfWgunJr5uAgLLhEuK+hyCorzGBrnHpR4q/AuwOOXC2ar62HUC62BpBvFgs0EWiOCSQnfG1myI3i8wuEWCtcd9HvrGN9FYb2GOu8Atl04+DLLmhslJG7o711BxCRmUWy4M4D4KtG2FqhpfODn0isggQgdLhPUxEeo6ERz5UDQhre8QtDOUzA3zkNLeQdbdhRzPXDYg5C458CBZsZWj6RtbSA6vkVH9QCZ56tpQDYO+V5ahSgtdFZU1LDrCVQhRiOYqh85dCNUXDLl07AcsrC+iKYyNIcSzNW7KDEJgjJhzHMYrrBH0CbAmmLdgYitE4VJ8XMdTWAK6u0dRhM+Yw7SjnsRjprmqA3V0VXaD33RIiC/+86KjljmHuSgWnPTK2DqsScdzjaOqgXF+BIa3xwMhDuYar4/nPA+YIlXLA6NVCPs/2UFhdkRP9n3tiGKC+/P/egW3b6ek0F3QGHs7hR6gIZwa+Y5UO80tIYbWO392TfhvGHKjhJc07BWOrHhaWfJszEen0ShmCmrhMnoxIntp7C8iAZEsD0ai24ZK51hs/l8l36Xd2MiUcOJb9y9eISpugvFSfWG/9A5wmnzeJKUB4bsjmTAUcKaF02wuR5BOLX5N1yHmu3y7CTd0YKJ8x54Ct0uOm9g5i9P0HrsMXgaShw+ef0mhgIVSc8LODWuRHLQbxvj6QotTIeW7wfruGn2b1ScoATVN7jh8DaAOeoEs3t8w5Mo4ah0Yl1met0bjmVYfkITfwZLtBZBeAxdXY47k0w3ny/3BTbRdvviSI8r2dMXsBQB+b3fgwQ72A6iqLsWqnYFEbmIrVRCzbUgzNQiXFeB6boegltr5u5+qEqlKi3XCFVrZkTQKxur8xoRzNObm8bD/a3Vo8ojYbID4aYOzNdmgt0IFw2ZhERWH0wdA1RFEGG+AUVH5/paFQ1zm1N1CMZLFY0w9rw6g2K0CwFE+N6P5UaB6a4E/dgShMq5jecgMxOrqdS+r5UbC4K6Wb3QtRbo2nqgahaFaS12rYXWSNrohc5uIplqCYpQ8lyJZH8QxcgkQjC5MG0B00EbwsVRdgO8zecbjaD3XmxlqkdMM5quIwRhu3PpQgtVC0tzmbeZ26nnPQtKGQ/n6Np9XjEjHK1OKxpaklOnpM9L8dgG+jG7pXHtVmqgrhtGt+Ysra3QMLVZYt5bDeouXQTkwwH59d0X/94i2lypkX6vLXlGfr2ZrKX80vea/9iOCM4UCmWNoN67OhWq/sLp5vLkt+vIu294/16cgjPrqG7NFP3Tjd6zFt47llGMcfo/GUGU5K0nyluDlE28fmTLlXpzBcrVyhTkH2VVVWH93zYmChFyLRes5splC0ohuT7nm8H41Kw7D26m3X6Vs2aopTVE5Z/Zm+n3p5s1brQl6q3ESGSLc+5PBa0Yp5Gz9s6VqmsvvoTK1co70Xe/Ss4FrPDnNhLFxVj/2xFEhH8zmpO8r/PvRpP6d8NLyYugDvaXF/fMyC/Y/5WzFvmFvor8U2uKtcSw+vXfqEjBJwXkDy2CCJ82Rs0n7db/lRQB+edbtnzONeGfzF3x/1V+J0D+ZV9WQfjXoq2J/Ntdy5n8t0MM/rKKZFPyWz0X+dcHt3+r258vhOlnlY8AJG9WncvIJOQX7uR/qUAkPwZibl7+n23qVQj0+5nzb/7FFpB/6gafq5b/JKAg40Vyuf8aJMW7s5z8IQD5O8FYlSmT+wt+7KpBIf/QhXygHims/B/fymsT8t5n2+DwHzxFNRQqNfIPRhMRdGW+15WpRAvyX7lcBWVW/0ZNoxvmIiL/qxGke29v7aKO3FVlWasndYWS/EtJcgoFfCgabHWIFG4gJ8JbVUXPKjejmfyspe3pvEThAYUlvOWBgPHKThRzJxSMeqbR6ciY8X03aUaEtulJ/baXVq4rc77WwmbIfubO89ajkFeJ+crOZ/11rxmojVWUcdTQF6HwDN47NRaeg4giZi1BCRToSq4Or8lCl0TB5LkvOoJ8ACC/cBeuSTb53Z7SVeQVh+3GKjo9sL2CNtRV4atBofbOKCGz2XOoKqshnE5nCvIdTRWJBRzrKFEIwkUX7NoRUTlf7uwB2f/U6xG50IgCCrHuUbWHiRY/mtyt4F51adNxdJuDaNmXb+OCvi9v+nYlSGGka8VgyIQ2EqJYiGTbysURFUzNfjJdQ7O10zm1fVI68NpR6sqXoDuphZXjebQic+qvKCoFBVMYRHJ73+F1IcJr5rv/AF51c+73mU517BT36f3fbV49geK6tDtvgFDEHLD5FthTSizZWtnS9WwJeoiGxlaEyjGFYiuZWRE+pt6aqqmhIoY2js1jWuiZRTJFesCUMf9qrXJAZaAQMUlatH7jzEgjipUrNKsTWZOACGvtreapnVWWL6tq/F+7uPwS0ffHtSgGnmsQIFO3PnRF5joWRfDLqIGzUrlT14wez6ERZbQWHkQwVSKSqYRYlNDjwYS2ZG2KISiV0yoYd5UmS8BA+TrKpMmelygpnM0UTnMQLWQ7NXXcVQTkdwp/oGtMCIUxChW6OkJqCc3MIZakhVgFkaj3fBUR4Sjhsu1bINaC5vqSeZ/9fNMoeXRZHZvhKhr8Xpd9JFul7iURqEVAGPDbnKueGLs3UHlrizv6t0r9h6OnCyh2nS7rLsJqcKMi8QAlE16ndxKGgw+urfYzFA2BNkRt1EJwYghSKTprO1y2y/YXQA4ciWQleaBf7EyiRJEsrz/9NgWPO/OYGS41S4a+mYpGx9TXOdSq3WdLmujsLa+2DUin12ftzF7ND87QZfvXU2TaXh244ainrNo2M2CfZr5vdtBnf4SY29SWKA+VruM/g7b9qG9/AGb8s36fdxpOx31xxzaCce6eLTRz9v7WCZvP8x0evz3SHTd8z1qQSKLauwemFqvPtfXKOlVXVl/gBu43p6zR/RpEx+KNC32hoh/I7zSCNLh9gdHCMNDjKIZtFjYykQXobxxIA3LkdczdIMJYdcwy5FiGiWVMTLmYcQ3OPSJCd2nKdBpobmVgrU3tBzhypqsMrVXpw0ysPircJTXrx5v0tMO+q7t/tH4tlNxtmPbCSihonmmcBnt4+HS3bISatQ514hKefD+/989Xm2HLhSgcnfD04wBcz1jvhhL2uQfmypdmJqMbKABB9TdMRzsR0QyUX3JeWiNMHY+iOd9HiTFefLWv3JaV1WLuOZke/HHxYsKxcic1Fesrnp0ZA62tnasVd5PVTPJbctjXbJ7xNG0s1D/8iHC2Y2+PNVUr4i76e5pa9toads6YLLMftO8cQmzHub5a1qzHmhPT6z0DWUBqyv1Q9WWZC8/UbrnNxFl5A3MvGBP5MU3Lt/MH15c2Tr5sDrvXUAKIYt6TSpWFdWWobDw1/qMFdfitfc35ta/4oPd3CsE2sVP6zasKYxQG7NZ4F6z70TxaGbIaQZc5T6IExWoFyth/Z/8WzXAAJtozJetuNGtldSgyfnDLZygRFJNhMyJGtDFqele5ilEXqkUEbZ2BlQrwbKJ5tkNgCWOpqzZicfZnQj/h2gP7Kkox5aDEceKnyldF4o71QzSpqBaGXSCAYqa06WtMRBQDLq/Z1OhHs1heuWUfDEXd7iEUprjNjHLGNWmti2/XnB7PZdlJvaCkhI4vy9BafsjjtwdYa6rlvrcSlnstJErbIBGlrqkdbnvNwsG3IFGrBkfIwmD5KQyGWPkx/DaXFnAlYPylWERIWBV2O0yEzLDeZOk4boHZL7M0OjVSeAPsCDNzfAtH3555+LEL33d2i3P03ymIp7e8ubQ5r6JmKdAVjCw5GljKRDdjyJYB5GoRzWvMPx1d4eoyDYgd/Gfo7NZNmpFQK5W7h26bzULfCZrKzQm3zVqJKObjJhTeGIcL2ciU1MdnDUB0NGL4rNZjv0DT04l56srt8vVzuYHWxBLUGsH82A7rm0RHVK84wXPHxjgmtnowseIUMv+UHM2eNw2jqe2tsNBxvIsSp4fV2/HSy/t1M4rIzhTaZOuD0adEwNbbQMtxF5rgvccTDhudXXjJoLtpk/HjgN1eXTZE2I0yRR0MlC8ilt4JVnYimKvdmLgt15GdPUwkolJZeogy+wap8+4kJuVtxy53mMjOCpVzffZE+T395UuYXrQUASfJHW/AHv9Sy8LX0pZ65PVx1fDEi+4yseNTmPs2muZPmP4yWpyC/E4jyOJO+Y4DkcJbLMG5xFkPJi5ygCz/RAmKw1u0KNtBGhATKTuML2VK/EtoukOt+BM3HXthSyZAW0/FTfdw1Iwow3dd41lIAzLrq0QpzFlATL6IETizHvs8msFOrux323fV/Zwb41Odr6SzByUCzuDPJN7I/U8DkOQ4mtU+NCuuvDW/VV9vYa8pKZrrnQiMHE+hM3EHQdH5tYMXcuaYK7/am4kHoKfaLLQ03R8Ee/2ZIHFhk2btuFtVO+a2nlN3dH9pge6vMa6/XcPMtyluy/qpPd5Cic3D+pcqXthZJnh8gJEtNbvVTZMoBESx2FhjG6SyojEWSe0ccPNipevrFtQ1JXF5020caGSmZ2cZEUAwuUOx+bmdNSpsIvT1mszN/jSNoaIj4e81B7HcO/uq8uopzvpQgmeD5CCazngGEAdcbWQwWPCiaGs+5Wofzb0d/NlbrDMHmofSsdbSfnjwWZhIwmnzGAxnbrG2Q61gCW1xGHux0IUI5vikAQjeBTSrTggYgLSYS7vhOjTEZdq6MN7iuEMZF1oyMcn6bcUFJO5ITmSfYjHtFAREI8LWzizt4SCiuNm5Bne1Gc24H2109fxrGyx+2VbNfhgtP6M+tAwNTfcw/+XZaDBu05i9UV1Zfo5R5+DbKAx/e2m7vB+2jjtweWDu60jGIfayqQqWvo3QkiZl7uVAKYIvJLwuqY/Fz8ramNoJwmJ5N0vl/S8m5yG580i1I/dA0eske7P3sDMPG01tqvQS0eFB+r9eQVWpvzgF+b2eYgmFkVk0SXttcOakrJab8sjASjgq/b4BOgMQi7ZWKYTK6MZQrX0f5spG+9dCAWHJWmeUtPVuDczayxrqm1vG7qzREjrjrXUNvVtj09Z45rZhsKK1e+N4lfFOOHS2td6M4Vzsrz8IQKT0bmC69w6cj2gqOmlsH7v2NjZwtYQWxWyvPQ2ZKOabHJquUusY2FeYC3V0Z96DHNjEaMTtWNj1fztT4z8GW5Inz/SXhWOJL0GUENlGBBRbPxK7++VhGsqqV5+8LwTVfYkvzHd/tT7fu76NZoj8sbzZszMBfT8OdxfHK5kotcB4aSUuJ0KikdadTmj/cdlSf/AjyPWOfXP8eBc8URF6yti1x1bjVl2TSGUAuzv+ugkLPw5X+8qsgtULDz88UxNlZa2c/OjZTLprSuyLm8tfHoi56xHF6o++rb7SMMEfe1C700J99MtZzPNjszgF+Z3fg/AqilTU7nQOziBsWr2HkRMpcdcwtQ8l47ZFQ7uqzxVY0IiKWb33j2fQ32PbQESYtHv9kWQdN17vxGS7Jf1Ud5ELr/dwsr0eQbAcugJrzw+cTSGmk7jN0c+s3XYzuYziMeCsuEGYmESxuEvkxdhk+xDtm5mZfvwMJSDUODcRcd+iWI5Qv2+bYC2JZt6fAWTTHrYNXrBttduqo72XvFj2+bvyV0kKpo2492KrHXZdtvZafz/EbLYLFqy2raO+TF/rxqPuyacV6N+wRStWUIPnoN2XlDhbwOzZIBIehTZ32K9j3krU2kszk2AOtCPaccm0N+w8aWDhSxUCitP4oRYa+qKByed2w4qYT+LW4bl7RU2nNepJUTIRtTkeGWjKPN0YOozaZ1NnDMdb4S5cCzOJ6PnRYW3xDut/9Sa9cIWTyhUVuJFqsgqCFJYUICfym86yb8em+vzKKMVvOdlmS0vCXYhAQeg//onr7fuAgSqnnStBCtrKpXLn9KZcaE+A/BPN6ucpC0PlW6i/CYT4qlbQZLam4tJXsESs8IyLrrb/49W8aclFApR8x/P8kIU5hfclQn5BToucghjVszbzYxQWbg2f3/a+GyngUCRX/7UOZBqQvM4LKp1GCtAwVN6+3077NUXOMKLe7EFWl1y/s/KmRn62JnKu89kpaDmbyFXOpPX+rKGer5szW4xW+D8GBOH9qkGETDrvjyyF1wi5jLxrqyAB5GwivOnyLgIBglB45beHE61kjeR3KWPyNa+wjZyekS6Q99c3FKYoaP8NVER4O8gZzx3lFxeAS1adwr6JIbwp5/e9cNTJa6M4gHwuh6n/uYjQWqv4I/7d/LccRSh6G35mQAT5fH6qRSehonwSQH79UhTkd+JIirGUivJZAEHQe30TtUj+05q8yQV5KUSgeFNclE8pH+WTzuHXRKINJblImcanKOPj9bEOQuVzCaKUFDcwK8onlI8ZQRS131IoodAL9DdiqCtivmLM7qJ8WvkIQAw3oSab2yJ7bvtTA9zF6pcSVfrnaMrj/25Jeg4nwfI8GJgIUpMsDXmf2L63uzuLu4wX5dPJhwCC2mysTm7WD5b/XPxqV/Q0B+KH1H6NDt6WlzoHz4+twmTj5UZ5tWnM/eXw7LqqzNOZcBSXlxbl08lHAIKg4344+3YE699qla05giK1swDL31YgEJcXUVw1D7H5pQ2Wvp0Wn9sX5TPKB91idX3bZKhsAhMLx1VV31pQivFeC8rrhcrQMmpkoe+w0QGJuNbcNJV21vwhX+IV5f9cPgIQFLvHo8zvPGDC0cjU8TYKc/UE9DclYfR4mLOyw5aW4wVKSvdRihH/sfP/9iV+Uf7A8kEjSF+jhb2dRzjaWWC82oSi9ngObr49wuZxXdfOFKx9nSV4vIJCFKs7xV1oivL55EMAwVzth44vzuupsoQ2hcZR6gWLUzhpaoDBauZ+LM4mm3sHmPqxdDMUSz5eRD3FO6yifD75mCCeIzu7KNZs5eHOek7Lh1HCodUECQeYw5fUVZQ1bq76oc1eZmtdLy+t3h8r8lGUzycfM4IMzJfktnXWFoUglWaQehMoiwmjSCkEXalJfxRfFhblM8pHLlbMBSiUAie6XHFumVbxKW9RPqV81Fqswp3VMb4gl363D3txoW1RPqf8aRymilKUIiBFKUoRkKIU5e9KEZCiFOUfyB8GkF/eOON9QM7M8a87Zslvqv+HLib/ZQ8V+e2Qzf8lP0qh6I2Zkz8EIJJzEZS/67D+QV7kuafKyH+4b9EH7xYhSPZH+s88+wUprvN8lT8EIP/q7iEipDqQ1+O5rl8eQU5nGbgQ5B+NAP/7GOKCMHB9pPmHfy0+y3BXlI8HRIT5CU9gfB4lov424niJifxMrfDtoTJ5GtsuKlOIGlCS0yRXKzNCcebhsVchhQ2YSoQB53Y2WwTJ6CO8HiP5FZC3BrOaNc4u0lWztVS21ZyiYSbXcPYg81n4JYJixJaYqOetqmTyO04qAn0dvLVh5GcHlkw3KhGksFrhTwkIXc6aTIeKpPD5ABHe32CL0F7aPht5WiEvknPe1oqLBdudIIJrBfV6bJ9DkSns39dI4Q64BZE/291Eoop8WygiS1Af689lvw+SiyiR/IwCLUQwx+rIoPWmCLw3l/so6FdeX4FM1OoTVEEbxufT5dHpVdxMXhv5hhRLs0hhi0rIVwcQ6mJpG1IcSoBPB0j2/1ZhnPOL8tNMVp0aWmlFZtunLAiWi87VVhiyTdab0BfrD2ZEOGpPmV0HGIyNtD+b7FNI3XD7cD3ceUtKFK1z62uVCIJQv9c+NQYjCwu1aNodzIcVom4MW5ju2jdbOZsw1WBRCDOdsW6EmhoduRjIRmwv0Y/zJgamJ1WmRy2tUBmsX1t/VMLMwEz7VE26QGPuZ3SlDRHqpoZnr4OI0DBS8tw5ilBSoyJBqNtcnzeIOG3pnBUq19a/K8F8sL47ku7reirzp0B5n3Ul+qJ9dwxMDdTeVb4SZK7+jtGT4fXUtmm6BKHhTkpS7XPdVDovzGYksj5sQVSd1K60ooN3hs5m+1orkqW2RqgpUbN3Q8XJCJ8NEEToPuhCJC+j4hKtlBLVs5rwfOdnNGm31sCq/czfWGd2lDttk/idZzaHFmK9P897QncoETab7297QmvoQ3e7q4LRcLPXUyl97narGxGEfmtg0T3DQuPiZeMeGUA00uc6s1VoKj2uRUdkusxnPVe2NljyPe033sCu47DH0TiJoBiu2B93OvYSE9FxkUyPqqiKjx+eNJ6DP9G3EYj3Y7LWMhm4dPh7UzAbX19odu4hisfoxP556Sa0LN47k0QaJzbiiyhSzcsT91Jjr9gILVJf4Vhy71PjcZ85FhFhbLk5an3E4UwO2troGmxx9vS/jjXdZSMoYcjec1axgbUFzYaj39V3FojRV+6M33FuSzq9Fko894P+6uH9wYrqLkZtV0l7Nsig0GarZM5xNegORYqbtn82QEQRKW1qSqHkzaRqXEMJAnZrPwStZkiso0xKcLTT7TsVhj2gbXNUNR/B9PG1cZX0RuD78QHKJFgajxh2Ki1iEmoa0wgqlgcRRUdoG+Z9Ja+ArHlA2VK0OwVR3O6jzLZujkKtsBI3M/VlBO4rDAsPTSMoZ7iGhuZJJNuj/tIUdJdNMphACPzEbK2l6+sc7FWbCbTDptuoHSxP97Z3jM0vK4hYU1Dim3+xNY9SnJxDXW/HTDWI4i76euullH0TVp0i/Oyhu/xWISBC2/SB+9kwvGdFRDPlBR0OTgVQIpTEZ2HeqcG+gCW0Abs7dzDex89xQ0F4A2Tv6wwkA0VAPh0gkPjaW+6rJAeIufd7FhBnCs1ZYORmpMeLYmxytGKDOl83+PteMl3jrLlQDPTeoRQ3Ni1YDLqqghHfd/a8IPKSmK+eRQk6fo3WbFWghPge6xlAxsdfbDnHse+iRXF/DmZrB+09aLTvmtWK1+iDirkAmuVbFBXTuR6FW9F41nFsYSZlRbtqmYlaMMLg2ufgwIaI4rtLFObGG2IeFLXhMUwsH6ZPQhS42o+uJ0u3sE7UKmHMunyanZQQ2IWKVUx09dZXhdpQYpg7cLrid4ZCf/yyI42Eb5Jrn+quTraRDS23WPFycg4PlugoRthfUoNMNi7U5YKNtFkrSTPFtU0Xb7E+HSAq0NRbFrLkAaIb91CIgDeI5rLR7x50x1Bn9h5/bzt1vg6oiPe8ZKZY9SAithWUYtiLCK4p6noSfndphDUnQt1gOjGJEuqrRxDNkh8leBZYygDiiKZtTRG/Q6UB2UfSgBjxzNOMxibQHDhBFKlBTFzdo3BMo40erdNqK0HRd0vFMJqLMDp9i+VEaPNV8Wy9nnXGDNPXdhRiXaN9GU0wakbR6aGlAhF02D740o956s6jFbXQuhx2dyCvgDjXUNT1tlbZdN50fqT3BoXQNhHuaYPz/XQ3qPWHJxqojwbhsDr967VQY2uFGV89zPlhxu27rUGUIJkRZLcHzY1VFQH5bIAoUsdfd84QyZuDDKK0EvBOojm5RIkRmK1f0/dEa7gbelpQoJjyosXsm0YpDlyiRMfnGOzToqLfWbOLxn2l0OEgSowwtiZNpwetsE69AuKPoQy05jApxe0lKg3I4iBpM9OFgPS8AbLCbqZHBrKaRDuOBUykXDlAqnytmCvcl8MqE9rQpgVT9TXt+2iOQjWYuPez60RpxPWIAhAqN8IWhPpbm5lXQLyrmNnurWmzKQRAUFozYWAsgmXZZeLI2m+bQQkDgwnq45Nw+YQCwWKrg6M0IFN+RKjzjCMCZAHxFwEx5LMBggiPZwf5Q7sicryGIIJ9Bk2ktAoRE4uDUFfazkDjCKR8FkRpOspG4MaYg7wUBmH2eIX4FKx8CTId10h8GB6+HKFEcE+gFLWltTDb3Go85o1r5qrTtkwsBhDRnPjB7Oom2FwFd6ExVq/QrHhBFFN+TEY0atzT3Gd71F8Wg5HySQadCuV6wuR8AcSLUBWtYq6H1/cZwS/zMNc8xsI5Gh1/BkvjAdtloyjFvQdBK62EhuYOtNDW3GoA4klBzCrCiYdTl0JAUCYEczSFEtJ1anuHoMfvEExKiDSaVPgabprrENFYrGlAopUwN45ZFA9RzDP1xgjiqiQ1jubaVQTkswGS/64gh8xwaSK5mJjEF0QJT6GfG/Zpgs3Li37PErhdT0F6whs/7aOw0LixPx4+QImwFXo6H49OsdCbPOxzPdJf3ZO0xIxEBIXQHXevu+eJRU9ufcOwEeC6VKPGfS+2Zhjyetrdw0TK9ltqGjtgPZ7c901D5yAm1nwgiq0EJnquUNj3CPZevfTojNb44PhE7xKM2/3LVnsJpuoRZsMI3WVtHIX8Pct7GlFEfP6JweYHWBpHy4vKctJ6jxBrPLm80jVO59m+x9JmX9xw7TNi/3li/Ym8CNYtlGnQvtRj3aarMQtIzeD42W3cbUYUM/anJ1sSxfTOFFzbN+6jMdiP/rzhvPFpw37NWKgVJsvqYTPBcCB5Hk5xUzaGCN2h+sw8a7qxOAf5bIAgoPS7wJaK1q2n9bUaLgYQESIn7XslULu61dDQAWNTLVXou5+d05UI87Hh+toGxFCMTVlOW5HvsWHz6QBsr6bMXMfWTLVpQwgDLT83x2Ckc7Mbxcg8DSuCqAvDFpbUz5ZWJBib1tMWFDPtu1UoamdRVF2ACB0RFMEZhO+t2R5tU2cbeNw6EoXjoXX1rhJRdzUMXSDUH5j1ycbzc2fjFkpx7dHDqQ4UXUEEob8lFkRECCbP5oXKucWWeSXXqy3fFfpitSUimfOaMqJCT7evWaBm+tXDcvt5aWtWiSDo6dWWWUQzUt0A5oeW1RmE+rVYLWr+qf2gBlP6BAcONHRHsKy1bHVBp8No3DKtM+dVN118D/LpAPlniwwLX1m/f7OeS+Qfyz/SzhTl2igo/S3TyN/vZ8ZOndWSSbn3ULyPae1EKdb7UIpHDzn/4IIOFwyj7/tSqExO3msoNvzIq/HCGoViKHseisHO38kfARDkbfmSkrxE+lsk812QqUQJuQVJxndO8y2TrEb2M7fcvdBWzmK+GqJAssfK+HizT2ujBa1ECMxhyuS/1tJ0+VYfI53xGURxZzX0MoWS3xGVO6eCBIII7xZ+Ifk/0psBzJHO0OlrKqOQZ1t4/Xg11WVCRHK9LcZY4Q8BCIBIQZzwwiSSUclq5tf6RbsCBfbebBXGLJdf/A2S5oydlkkU72Hv+jmx396NpA87ESksLjiQgtL3au8L39vCPDHehfyGWjHm4q/KHwYQ/vYKlv/mgvmsyQ+/TAT59xr5+KXrxUi2f0f+YID84sVfiNOvm0J+I7fQ2j+pKEjBrdB71bfV7mnFj2VRKaF4zX8m+SBA8iLsI9zF2P6pEEMUm5sokQI13rRBjF61ItmMwluotw/M3ZLRDcaQPCaEmp46JGct21BB1ySXKDBa0CaIKNZ3Ub9P5H0prqT6dPIRgAhkZsnZoJ2cBfjerBEjV/HzHp2dbRYE+TRSgmVSadq9pDPfinMOS6AUiCbSXE99WncugFYqN4unv7QDlbU2dITK+bZmW1FUTho1jGNRvE2B33dJNO6ntLHi/PfPKR8DiOT/q+hM+zVpBIxkcgPFezclgWxx8BDFWGvOQk6v4MVkZbfiqA/FnhtVMFUYqO5+a2zvBCW8FSGZxOg4Uui0lSnm/fNoxXiS4vvpP618ACAiwmRfoKcWy0KFZ1UrOh1EwhrTZo9nvw42Tu48FcMiQsQfONyG06Ohk3Z0yu+5aqPmynswTdssmGMVnphJ6A52LJ2vaURo20O4eQS9NmS+wHLuOlhhzd16drtilAt1l/bboK+D+pZBz+IQDQ7HyncssUHPzzEEEa57PD3TppeK04qhnwF/kJkbRK2NQs2cWab8nsNuGOmqW4yhUp6KSF8SNexOjAeLlPwJ5WPCHwTL2iNb3bgD899d97wCUvM0N+rwwELpUvCgeQ5ump9nznxVpJx9T8NUbqRG/C6C1vDhE5seGPd+n/fuw0pzX2wr1I4STkNDmKurNR2lA9shjly+w0XuQi/lvZ0oEerj40fD3t5uGhbXjuyDTPtcE53U3e8decczC9bDB8HOi650RTE5DyeTZQMXcaHq2AHT1cqU3B3pc2la7H0ba6w33s0ul3ey5XqMLM0WAfkTyoeMIFQsoRSz4UqoazylPQOIQmhtbGXdiWLKhuG/wcQlB02jmXkwY43btPSgmRtk0lcDQ40j3JRVwUpUIRC44GbQc00qQK1Ls+tGc1dWB3txQRQpF4q58ioUiq7qEu6fDHAUo75KRPFsR9J6DjS7g2jGn7Stmy1/oJv7fbQIlsZadss7oKYxCJbmdvYPi2+s/6TyEYBgCs+iNTE3WuF8Zj0DCNtbyYnGKpLLmOhqLqn01WJiOM6cB6WE7s2z5dApnW5MTLlZrUAp7DEeAmgmo/WI4v6eq5alW/xJuqyalgpMmfJg3Lj+L/cxMdLcjXStJv3hAZYv0UJXS9IftSBCfcK1WSOZNYv70eTlmS9BYorAdE8K1wPStnu2H+oi5k730VeCJnBGm9WzZyr6e/8Z5UMAqaweRTRLPSghsfAKSCqaTHW+ALJxi6YtNGAJdWfck6YGUYq96MluLHTKghudBqTTgSgc6+xVGIAYAFx4ta026DTHg2lADIhYc6CZjZsRRd8JirrGDmLxpalkeIz9dGMLtqWpjTQgCKa1ivB1GhBNX8XU8/NukM7DEp9pq6+/uoGD6NNuS6iLhat0m+FKND1JqHn2umqLfPwJ5UMAUVHDQfDZhSDRA+MWyyfmxnnofgFkyYEmEjKbQhE0MTupQTTatwINjad09mQASdkQwTacB4jQH0jZVWVgylVDbXoESZvaywNkw48mWNpqaR6Fo+oxlp+gobkWJn0WBBDFZpitdJ3kMgpRBB0tg9QmVj2o8B4MNGYB6WhsQHCuo0S4ryi+pfgTykcAokja6hmw1Fc/Q3vc/ApIaI+xntIqOr8EqbTvw5LLQkdojd0MILvUTJRvMxVVBiCWcAxiYQsPOUCEvnAnLFafYwDy4DOpAkBGy4LU+5vqLGXfaUg0DnDmgbrSCHWeNCBCa4eQirNSbVKclu+hthswe+J7iNsXQ4e3sCyX1xqACPZzOPjWyWkrnDiK85A/oXzMexDTcjgQfWTG7vUmOt6eYk1VBwLPfd2sni17434L6EWbx7oFUz0o4a/snQdbG8sVht+TWR5Yyeq9RR0RJCRB6EJI9N5rqDFgwIa4BP//J9ZKIER8neTGTq4Tnevr3Zk5bdb7aXZ258w59gdtB+Nxyra+EaqTMBX02YJxOH0CCIr9v8QxUrATdytiwT6POn0CiEjNiDfrGSD75bg/XmLAaj0hFw0W9sdnEEV3IuhzhYh5+yZnOPW7bf5uuOo0w/ZfpuD0ixPbc1PkblBC3mexfXy3xoTf6y4Mtx+x/g/phzxiiTDcHVaCKR7WEMwz6CURZgY6cCp0pQ/lpUbk42YEZwe1QsdAGZMCUzFpVKHXxU0zCHpFDCa9pEClddAqtWIx+bwdoXxoGKEyEMMpkBqu1ApmnHUFM8NFHUNQBHNoqkMEZ7mmKq1oOKGRiiEI+kBe6SakNBzW2pP0/0f6gV/Sn++T2dzzs3HWLKnmnqQtW4IK0jw0qVHb1NlsbRr5+n6iArzcJRR55vCTEw3WpgftpeX/r/Sj0h+IEqFlNYcYpeaR1rNmM49Vz8VpnPLEQUP0ZbtBL7W1mmzqFtWq6omzRRvtLKP/t9TOMNWmNrUB0qY2tQHSpjb93wGkMbn4dkRhsyDf12jz/Bt8PzoTl2Hln/f6nzbVjnP/jadgE+QnD6ET5J+avv/3cxBK/U9zp5df5Gu/jfgtjCAt/w7frBdE+8YIorRnI4imkF99n37VaPP8+/28fkdN0lTzVU/b+Qx/mwARzDGa700BWt75GkfD9BDSIESesSPyJBdzhJFnddJsUywH5KmRuUVUU7JBLUmweNbIUyUCLQYUUx6dhjEG7Klf8o7wmYkhc1NTay+f3Pia84ji+ADVrH8mDDxVCJVrnZfqeYlrEcqOdKunTXOsrCHxMsLt7Hr5mTtNfxvcG8ZVbGeW/o4Aefmzr+i/QZTxH8b/1E+kcRDBtKprrPhpVNc4jKO2mpInXkO43HuB8FjX1Fs7sJiQx0aF+wj1TLJOPKLDkFNPjeqpUjCvqkcHDV8V3RkTIvXz6dEYquHl8PTzCHfFdKdTMqeouiZe9rJRfFFteFRaRmPj7DE6X548aH7hbFQowtEUtfavcHSXER4L+d7wk6fJEAolT57ee8CShdvI0USMx662AMQo4cs1ruLP/fj72wGIIC92NNAYG2nJ0vkywSXCgAcwlRGh9UfQ7mwRFTqih63z8Gaj4o3lqU6wLaBeBph/Jflm6zmimB9HpEVvqMf0dD7kNyPUOQezzyPca20pSvoLj+vGn7nxvPd1UrxfR2PwGsVL114+Jgl5i7NResmh2fPIE2s6Gn7ydGEM9TRWoRgbR5Wdws0eqsXb5vBeh4njAK29cuD7AeQrCzEUlwFMp+Hc3McBBh4UwuJbZj76vDsQGwsGZ8Om6579CUmegjMXOLvfPOZ4Mlh4i3M3erBvJrZnC64gFMddc6uJ+ggycOL19etop8WDufs4ilWHq3/CrYzG1JjLsRqcgMpnm21NR9SE1zUeM+1VENaWqGwN741X6b6au0Uwj9mCC1B8G/84njVTGbdMVBXFM59jFUXI7ho7bix9PPe4Pm4lOkh/LvjuO5iyzB6tklwv+D6bERRTUTOnecpbxY3x3RKK5Imv8AZMaw7f7DCYar07OYYPdt9NHronbYVtRAgXvBPv6X83fXJzqoQ34e6RKrGNoO8yJXRnUYQ3TJi2A2fvNt9XLPH+uX5D/TubbVsTdqpoLOXUQ2TtIY0gHAZcm7f+Ih0bDt9NmgGbY2KRT4FgsFqH+d4svDnk3GU/mje62l1zf9ZnCz08oDCfHbI86fKG8G7D8JzPvtweQb7XCKKqc1lTywhyGSCVCA4uBnr0mc4QomWOKQSGVl7dEpiLh9YqxUJ0/TW3Vrjx5s8zmzM87A9vd5UqI5F36x3YJ4d2uhbpSJwM3Nk6BxCE+d2lpUgW3eLbXTyLlgh1PQzvZ2waIsKIb3p+/PfHaMGRqXnXOuRGt+areqWrJmud4LAzMLHg98wd5151w6Rn6LjrlE9ds/vHPSec+3rWdzFbP14Mdh4y1JkbXkhYTIgw3Ns/XO3r6WDgsjtuuaaaKbyrEr9cjlvXUVIHiPXtFz5PditYAJPr6mK7a5qO3cXhgA1Ogvnp6E2F1Ug17vER959erOwgwqrVvZ5je/Squt85AXPeue15Jr1L044A5FxozI/GuPeFhxKzsXTUntvyegXdPTcUsmzA3JyR6Md81XlyXUSEcvR+YMs1Gia5cTtQ8HCX8N0/sJO9eP9qCdUASHCB7T7bfbfe9/pwsHOAYu/e1E5xMaoJWxmGugandw5rACn37R32dxbbI8h3yjCV+9Mf/nSFSAtATP4DRE+84ewdvPXzyYdisIBvH4ViK4hiNYjTPw+5cTQRwb1DyKIJ3S4UWRtHtePxq+Gnp52cA2XpR8RaZeQzGpsWhQjxSBqKr6qcWkUIR/JaZhUllKLDCLYqxd4QTHSZYW6dbjeKAx/zXcOwHDXzMIlGdhaN2Ws2b9B47dcRxccRNPojZsPlO4ti8qER4b7lhgZAgqvkOz9APnJRD3W/njOY8pmS+EOQDYC9ipii8+fRxtxf1cMqs35NyAXhxq0JS34zmKMhtgtonPelSKzCkYdk5xtIRoZYcCHEM2murtHYsZHvKSOgyAbRWOhKoozwezMnlw1PPYNPAJmswtwYT129CqAEZVkEzxiT64ZEIcvgHBojH9vxL98pR6HtVW9nb4xWgDitQ2ji2+FTwklgnbXek7krd4L5qH1RU+z4RGPVBpYduDlD8gfrN73v+dDn1Djo/MLrynC/iUa8tz6CmLbGri0BlHsZDe8RlmN09msAqd2uSkTvmWDPgFrfYjIzg9IoZRoAGeiLKY59aPTf19X7InS7auoTpRrudM78V+PXETu2fXSOEyZEYc+h8yZqRvuwcR30aThyaGi3G9e2oDwCxLbKcN8MEutZ4j7zRYk/iJwPvpvM5LGswMkszkRhc27zjxNcGdk5RRTvNtEZHEenaoPAGib2CyiFd5CstwaQHjOufVifJNxTQsw9Ia6v0ERPLLJ5hUbVx6E/j0IUZ+s1kdEwarn/naMvxtxnNMoTn08i2SeAeKoQ2IOzRK2rHmPTDKWx4SGZOcR6h6ZUDSCBWvvoSBsg3wUggv3Po39ImF4CxFJEcL1Hs3xwRqbY8C3u7LyfF0rbFm+JHR/KAMiHzMlNsEgosV7d8h/T3WcS1tw13mVu1tFIZw4RQbc79t/OelDuKRTeCXreoLFlFaSe/VPhOuLdGUpwHRczKURRiQ6j8FU5tOjCsRvF7j25mvrj5Zp5RTxRIetAIzByt7NzOoSrikZ3HSDBfTSWomY2fdt3H10KexbFje3g7t7XAhCrCWKJczbtd188PyfbM3h6EM3zKbN5Yyvi9A+e7uwsplGhm0g97/P6Zg2tV2is1AAygV5zQxSesTpA5hMxlqM3J75DwlYnmHvmmbtHiViOawDRWfEx7E9iOBK4RCOcCTNmyW7198Q4+whF683CG/daC0BmxyAQWDS66q6iRDEcdR4FUT2rjyOIZ7bWHm9PQr4HQFDMR3/ftYWSZk0TIKew+24rCCve5icR7x5VW/0Ri6lA97xTsF+ixLrDJ4smHNsQQbHhQWO5cxhRnCZEsWtHuQyAHGHbRqPfouqZ0UwQy6yw5kNwRpZmeocRIZ0pgjnzvg6Q9y4Uu+u8N9Qb5lV9BKnZ2TtBGXDfReOgDpDZj2isRLSh3hnYsSgcB7A0aoYVN4hi6AVA+gMoEcyREFxE8rXehVIIvjtUo/Oh3jSiuH+HxuAzgGgcJwQjCD/nRWMnauYi8ClkFvKPABkroJiJnHNzjcalj4FEBQHFx1k0PnRWKp0D0O03G49S7wJoFAZ5CZDXj10dQ4kInoXZI3AdPALk3TsUbfpOAEGY6Q4jL17zpqxFBPd7OPS5j8CcGdO0oUNCSTH71ujuLdUfscY2SWnCSIDU7h9Puei6EM3k/6hp8TjxrjeUR/5gAORNZ5JPvYHGCBLc5yiSZ8jvVoig9V2iD/5ph5noNtqVTbB7NBlwKn8/zsE/nXJo1YVjC4qNdZyJe13Fh/hgjCD+Eu8zTp2BVwuin4d533vIgLUOkNvOKYquiD7w6pzpHpfOXACZ6priPGFTxggSMeP7xHBfDSD+c8Kd20o7z2uRCcL2zjCXZ6Q0FA+9QxJb1irzOlvRGKJYc4uznit3xQcjR2holjHUbp+TD68OKdoiMQYDxsUJ99UAklgiPbqAadwB2UiM6YyNWO8nGrH4q5Tsr0odXW849Pk7GAvCa5/S9/9Yf8R6HQDPCgTG4NDoap6triFKeXibcFdgPxImmcSbZepVVfSlZHuS/k2A/Pr0H0a+MqcrjBDcQjEbKaMYcvW5/FVeJ4LWexPabKJgDnlhq6uvr2dOG3C5Xdm9ReSdPxgn7utx+RdgMeHzTswOIIK66vHdHL1G2YZQOBZgw28L7J9phu0v4r7c9SlMed2uQBo6JnssrjDdVpc7t7n1pV0TTm0oBvfgsKZ+n08FFBfWMmZ7z2QHb3usrp4Q5Pw2z9G409B74LfZJ2Y76E/4JleudKatfZdsJHwjK9c1wwz1pCh0M+zSwWydgmWr1ZW4ZeeL49XNMItG78zQH3VbglrY7fK5Phiak7a+OXL3aOwUYHwBJRTtbpd9GJGNhM07MRLjtvOLeMCUdjshZZmGeZvLNT4Dppse38jDGQz6XcsoEY79vsLEbJGHhM9R3Zxh2NWzXipYXLuDRygUG2cQ2DFGEK3e1Xk48Lv8E4j0bKKE/i+lLRz7cPelvW+pPYx8F4A8Rco2azA5EbNCSGm1UgpBUBeHTkE6SmZEUOUZNDOfPMOVSt6VxVSKoSlEZsq11sOLlNTk0yY0QagJVpRoj3p1hI6SJlodn+hpsyGOFu4Qg4pDKQRT2FCrzCI1c4LJxKN6LYXUWkBVYgj6UNGECLGSZhg1ztM6mtCoE0wlJ/LIUJdOacah4ZkWHzYhONMmdLrttd75cmh0TJc00CsVHUM1Wslcd0ZPgbNeq/LlemMlr2Mi5DgsV5LBfmKGes3oXkwMSqc10RCJVRQiCOb6pcJc0g1P9VIKrdIhSkOMfxLDCskK0uxqx1RalGjWbgNk5amKcWmNdr09BfmPLFaUl7uo8+yoWPegoDCBAiW0cDUjxF9sAg8tFY2CwdjQgXxVCp4stHrIVww1z385wh34e9WPjqvGVkGOfZR6bH3KbvhSw0tzSrHhRQmeLOpRvRJeOvUi4F/kH3ja7GqDWbHtgkfXaac6/M9t2tC80xs1L2LCRRG2eU7ug+/Ui1V9zwqtweYNva2Nz1ppMLVqaNbyxNQ8pdH8i0abxxcFnh14ySeKfLDWu+vH3rV4/PJW/jvnFWmv/eTeu6k1WP6OQ+Cf8ZQXgGmRVux7E0uolqsi7SD830jAlGAK3d2G/0dH83rvir+2d4I+f3c7/EMvjghLOx3tHY1+owARRJD/1YVxz3v3G744/6uX/38BII2U4P+r/0DN3v12L44g6icP7GylnxEggjyf+Qn/UrDB1wVaYqG+JYf8qPug1XYzSe7X+f7jv/GC4c+vTcWNtNNM/9CN417GPvP9s6S/ZGsC4VtC/67tl/q+ExtgIEw1CJFf52A73Py3DhBBXv60Hg4gS4+6hcrdvziCHL79uoAI8STyC7ePEF58GkHUvPkHP8sLqwM/xISw9CuiM0TYyiOPVyKO/KtW2Wp/Tf8hABFhaG/Ss77U2ERDMXuNM7qKahRDVhoP10aFISLqsSQ4Fc2CKJ0DV2uQuyJtT6KbUEweoIk8wYDFGx2hIXeaABHDVmx0miWPjqFSWi037Bj1JkPckPk796TBqOoFDvZQRlND3n6E3uA3rDza3jto4VNPaprKAITqW64cntnAZD2sikY/jIXpTxdHe66k1bemvppl/Kc0MlvzeRJujGKTsWUX4mcdFQTjmHnzf/81/Qd8SRcR9juv3x+Pr/B45519xtTXjaJenPe1fop4GZ36OklrCOyRt2XXaYTyfZqdFTRm91FPtULS7zcbJ82wjfrNHPNPMfRZ/1rc7bM6Ra4b9VTJcybVlGx0/Hi75RMIgYUnX4Cmke1jRFoMf/UVlcL+mdOJRbd36yiECDz24/MN6hHZY8M8tYBh/Mm31guKZbEhZoTcyu6qwfzV+UhTrCkvfR/aAPkha7G6/zDfqErdHU2jmFvH1NONmJYn7pzCvE/dTQzUh5qJrRSiYpTnneihWomSJYkSCR0tiQj63b55IUjtrCxgMiPEnGiKuSw6gSPmLxroEmHko70Dw7R2+1B5YwFMNVvEokMojZkUInQ4+aJ+XglmXQ0tLWkI+WlEIHiLJqROF8II2tLC+xgoM8X5FBI/1xA63k8s10GoNDQz4dBM496drHbs3zlBHZoQih0wNPH+QqEUEhNzqIiIyHK9X6WdhVAKFTparFUDKGYvUYqzMdQTxjAfT6jXc4g2v3Aag5h7AEV662i6cTfHqITKUAylDB+mJxadiFCceKMsWyjiE7cmYW8WpSmcJhlaMiFCfqv7MJR/GnmHVqppRGJ0hMKGnoGjW63vtg2Q7zGChBcvEHlW4blBU1+IQ6vjpmeMR4Cw57pyeU0s9W2OzEUmUKwnbgruIuHZqi84wIb7yuYylYNdPsshs+6byDqUfK7NEa8dEdLuPJz0mdBsq5p7JvvKah1k7mzWY3E0bljWzgas9XNzwXIyabcp0r7CbOcCHdEphnzkRlCUrBeMW24y72DvYNO93jOPZkTUoW2+cvedcmixj/TeQdZy4rVWCHt27QVL96bdZSuxZBk5sx6jRHFwwtLkmNde39hEOHMENm2+Mh3+IRSFI/bcm/ZCB+trmAIbjkn/NWi1fn2GVWtg3PqJWdtJcFxoACQwhqYx/hntad1HPFE4C7iuIec+CVrMZscrnzUes3k2R7MoEbTAhsfu3+oveBPTCFc9N15XEiZGxwPj0TtYS9xYvakaQJjd4eHmxGGzHkLVsnHW5VhGASjeW248mTjmyd3CZHQPxcPo+Mh49FMbIN8h5Ha19w+vVlDypFJFqygQwTsGZf8nxusAUR0aKrHF1B+24EOkzGK0Az56SPdOlkWIaWCt0u0/7ODIAenIMpt2iPkNgGB7T6kQ7eYwU0n1pFVwTY9xEgljsuZQgmK6LxV2xRBRbPgE3e1TRmTEh4zZGZ1i2koxkoesiwkvlCKr3He9FW6uIRmJo0SSPYtOJ/YsVHt0YjrYsiRf7cLnP79BXBvMfkbpmmEjN87UH7PCkb9WFuYsOhReM1MbrQgu6L1hlElxsotm8aYY7u1m21GzFaKwhjKxlNFQOsITQJRi7inaVYTCOgy/+ozUfHE9sOSfMmtah3Dr1xFBrB6dlT/l4MYDxwkzXAdI9q7Cyl9uOe+bAd8ar2fBvsDBH0MQCGCOvIXJLKphxewUxq8wRSdNDNUW+XeGYP/Py22AfIeIQscfWyIKBVPvJ5Qg5P1hdO5nnwCC8zDsOmI+YUZU4pTxPXSKo6VYZB4lgmkgGcwRT8yA47I0ney5pO8OnasCIoqxE47HLzc58NJhTeN4oP5zy+czQ1yz1Va2mxERbBPo7Fpw+rfC8ak/rKrMFFNuhWMN8T3g2CtNp60fuRlHI5Qws20zxHTrMqQz3cOHy7+fRvSBtH2MsH8Y3vQpoX+TnWj9GUYU2TmW/DMQjoYN4cAGOivW+uMc3iMKgWGF4rofzf2+VvWAd6PWrzG2E6smIWb5nBQR5BcAQjkaR6NwgkIfSDo2KCaMCVql+NZfRgTlXoR8JAyLXgjsonMxqt9ZUKR7FxlzlKZLcz4DIJMr5AoodlyUo2G433zaxAitmL4OYOr7gOCqsuBDEe5cbQPke8Sk/2G0K2J+BhAtc4pCVCPR+LbvESCmS6+90FUl5FYi+A7wbqOIZabMPTXDqj9od3TtfxGrgKun4C34jokuoZENGgD5YGEuO2Uh0E/ZmqZwgMbsNhofbzDeFl3DsDGCQN9bNKoWSp0+r7cQHNIbAKm6mc6U8CVq6heYy6EJvh18D3WI9nXDRVfQ+0VogFzNoUHCVjPcWZSwdg3Hbuu2htQBEnIjhP35+gSohtjVKOY6QPaZuUrYpzEA4lpCUdjHYvRrB5mwWhYUxRH/eB1d0gKQepVQzKTRODlDGb7kGPaH4WLSYXcnZuoAOYdwJgm3DggeoVEeTS94EVTfKSe9Dm/BNlaPKFxh8AaNHR94NovL/luUYUWoeu320ROclkOMqzFoR9AT7Un693jEmvjz7//0GpHmmOIdR30h4qMldPoddYCssutOatiOmO9zisJaxduPTikyHOszo9i2FnUcOYYSFQjuoBD0xDImBr2ICGZLyDWEe9m9zEwNIA/ozO4/AoRKp9XnskSiNUksW5iYsNCRGEAQYtEaQARzIj84C95qY7eDLEpxEMj7S4YJk3UZij0VBEXVf2EisEfR6oQ7qxgAUaiQfxfVAIjrGUACg5g47TFGEA3XBApz/+gAVzWATNcx43uPAkHQPkQOUJQ2+1JfGUEEQMhHw+icnTGRGNAZ2WA4EUa37Ka4iDYAMvUIkAIEc+jkezuqNmN7hy0jfFZQTwDZbADk0D8yu2g4DYrQaMjExghOyzCCa6cepp9qz0G+zyT9bmNHQ55B5s2fPyBGKOw+Cus2c68xWbspbMDAqypTf+iGqc4BslYRjnpIW8woAuuQ79znMJqGMQMTguMehc9eL5yNexTrAa+ZDku6vsfI+BEae5soQRuYPo9vuVdnEMVcAIXdZcyDlNSAMcWUS4STDcdb2LCBiGJzGyWkvTcGxATVd4uIpR6nejUOM5FBwhYnvHGLkHuHZmwaVB9Bbow31oR76gCZsyEExjFHbmHgDzsogb4q14NovmkUjn1e1/slCsWlHSXMjE5RLBsKZzcMgLxG4RzQEEH6HiAVeVfDCJXeHPnMgLHHKIORDgMgvinI+5PwwQ5rbuOHhqHOYej+4y13Na76zoqMrLB2gsaxDe6zKEQIl6l1xIdo7jOc7mEE2zHznXm4/WN7DvJddlaUFx+whWzX7MFaYJ5P0b2DoMeEZxNn7y1HvWu7gb4jQomR/rXMBmj2wv56dJVwxIziuHOwP2DNolkmswNOS/Bg0DPMVObq4MZtAEQx8bttWP3rJsxE8uQiuWPsWTROHveoEQZ6YghCODH3sGmzaUyPju+/Hhfzq3POoyIs/dGiBLPLdjBoP2RyEE0UY38KoeqfbCzZT6x2nuzfb/Khc2Nt1rLBcCQFpxERNmY5CBxcJur7gfR76PYjFLuKiAg3rpOHWf8wfPY/bARGF2Rk7GDEV2Z8D82/hMKdpWz0q8jg+MOef7VkH8x6PZii7w2FjnuUYqSGwqM+haB4OzqWG+/Z5K5zd3DWMojYHNkpj23/ym5JGwDxn0PxVR4WXWAqOPbf+UPwuid7ORLZQub8uaznjhM7ePe5DKCz0CPkrGPXa3HMmUWUEO99lx33neHMDCAkVuBd3/bYyGj7Ne+/DZDmV93WL+lj41e5CoTHPr7XhLtPaEdh5O51f3rokPR0euz+k4iIWrleK0JqQkeE29e74Ys4DO+OhTFnZz8vmOBwbG853V1XWxpMgmltGkwTKfSF+0W2plGsvkHqjjCzYKpjNrzx+rb8SYT82PjYHfpDidKCgGx/QITU9uznCSd3S4ho7Fg16jjvyK7Pw8DH8ctP0L13OTA8TWxCg+EJEebfEh4cu5yvm1i6I7mAYN43Y5TLbzdzaQS1c72bX7rgzdjewQzchlALJYSdaR77ddi/tzuFVt3bW3FyMZpEELa6ESF0juLGGBRrJl9fDg3P13zZGB6YgnD/66Iz+7ma6nYaLi+UwHxghuIOItrEdS6PINX1XCUURtTx+HU2yeoinA4ReosivkDl+vpyIxApDoxWDM+nLvfO0yG0iQ6ElQtEraxnZ5bz7aUmPyqiEPn7fXtFWqqktb1ZaNbWjy0c8kyd/CMfBPl6yO3LIW9kAyWtYbNfF28q+YbRpmCrgtbiIx8auZGXGUo0awglAi9VPu/XC/rKhf2qp6KY+4wSglv7AZS85KSd+fqHr+ZVNRKQ+kEp6muttMYSp9YFSUZjs7l20tAh1GsVGByaYPz1pI7a0dD/fFk7j9oaPjTsPxaRJ/XG9GSov/7KtCHWlGn6a1gUGpWGjUbp0aYIrd2qade0593nyZ2Ge0iNQzFVRJr9UCLo3aqB0Rq3qNaL89i3Z75Rd+WlB0/9VFA/CKKRc4empi7dHfEwImI4KvLSy3Zs+o8ASGvOkG8t2m7w/WMVv9qFJ1vyTfVFW+ACke+QffCf6dYvroP6pRr5Nz14qRsEtTAyOb6b/OUl8O0Yqh8NEEQQ+VVC8qtDHER+vbMNbd89z6gS5J8x/zWxH0SN7tLemuE3EVH4LwFFEPWrblURacj+ixFGzaXi37G78psO/m4sdm8/Qf1XR5DkECL/2o0hOPOI/LMCggpr/AMbwj9UVZcU9PCvG0FUWL2Yhz/v0XzDRX5bod/tLIT/3ZBbjYMgIqKkOQc3CvL4C9a6y5XRqKjaqKzP1AUEnm/DJi3bXxkKCPvTGMWGpamxpyaj4gltrdYf3RKeaVOEejSEpwZplTKI5xJgeEbZMoM8dUJ4ZkfjMFKmJSYLUe1tEn4a+mGveRUHXh5v//Ta84Sa/OJrRcWCi3whSWrQySOAaPK/3HyQYiSNqrOlBk2Kbo9qjUQSFKdvUDy33tT0PKehIuTXGsWnmPoX+yxKi0QDmpT7ZmhGLCk+7fDkBhfRMo/A6q4aDe1kzD8P/QCACCIS72bfC9phdxjFJw8itUL+8fZUU/O6qYLqUAgxHSS8fCiKFR8iwmFQI5ZEhJmSUeGcWp5BUCLpGaOiMn+uC+FosuRE0IpcBNXjrrdDobSgxZeLGiKKuWpNToZr1hugGV4ernsSSyqMnLBDqgYQVa4YgG5cBhHyy8knAJmSGpiThmApNF3XridlxjqDaCZEhpfLaHzMoaQu3d0xEC1DairUgcbYIEpITYdi7a3afhL6MSNIaqSnMBuwYwq47NE15nsyhYCYRr4UsnV8lB3WwtznEyMESrAvwmuLPXFijCAxTyrs6i0E7qwdCIVtlFC0BQvRW+g/2PRaTzTh2Opw2dIUMx2TOTTeuIZ8vQ6HHp+FYZ/bZTeV7T6H/wglDHa5bBOkZi2Fnv66dTmx2P178GEvF/TZDiFrtVs9KZajHAURUn2rn20Oj+MQ+vsKmRwign69MBl0De17XYU8TFjtlkKM5Pqy111M9VXIe0Ooe6s3s8JDp8VWg4gwGC041ntKXPiCBf8qR52WYD9DLq/X317k9JPQjxhBFHsuExe9k2hDZkK9Zf2zLT4k2lCK7tEZRBRnDsX8q03yo2EE9zFyUSY9GqoBpOyvSK7vfEq5FiAeySNCKq6Rc8NZ53JqODMB+SIEdxmOOE8tCJMfWbNOTxOygO8KVWZsBJWOISIDlsF4mI9eE3n/G5QIEu/gsDfO3V+2Z1LjDhhOoidWWPZLR2Yajq3a4XxxI9LBorXMdO80StASjrx++fvLcsp7BuE8ynJAMuI4n5FyX6yjbw0ebCbejuYrts8XRUTxqfMCsyMyQyyu0W8jGXx3OGwULr3tScjPQT/mEcuyhcacAxExlaPnPNgREZReisYRMVJ3ajjGSUbDSGMFuFO5VphwMWNJc+sWxYMXNjyIIIImy4kU41dovLtBCU4+jlOMVFRimXRmmjsXQsjFUD1BzU5i6HGiEDwGvW8ZnUFHQ5s4TX1v2OozwbIR65Vi8pJlv87ZPdg3UJStIZjsZwbfmAEQyxYUe8OwUzD6UGMtRT6hqFjCjhwK2woxLbqP3Rj1FCdX6FRHZxA0ue3TGVkzAKrzxqraj1g/Bf0QgJj852gMejH12wvu3iG2Cyicu3avpffwMTWaxn2AZMYAyDHqyF7wvTplwmWEQt1ZNKHsj2N9jxIheWX3+i0pAgfofNyE7hFHsPOeYibJ+jj7Plh0K0XIzRuLQkTY9ttO62e+KpSjA2hs9WCALWsvuLpWOXagEepzcupx2F7lDICEEno6c4GG9xKFLWPz2TLZOkCmYCBagjs7vJl0BLt2SfaVUVTctqhT0HoSvi/c1foyfFHY19BYypQpnnxx32Wq4U2juGn3Rm1aGyA/Bf0ggCyhs+blxhtPdUSn2XYYI0rcWa6PIJXoADrvagApopTlmFzf/Ayu6hNA3Joo5gYv/E5E0F33RVlOOAkc1eNrlyLVJJ/HDYAM9ej2AwMgWg0gb/u0+nve1HHEmBNj24FyJI7OsRVEcemejml9b9mxG+G23GXelpjcYNmvgau76kVjN4hmjAnmlEkZqHLHYThTgUUHq5GtNHPrJK0xhI7IQeAGUdbVOrc9+wQQnfNMh2Z5HaY2gkwOIinrWLg9gvw09CMAItgGURQ8Ev0Eoa4hDgpgyixDd9cAIoh1H9F6zkiPDsHwqztsOUh3nrLgMx6x3loUilX7u3ru7nhvB+T8TmZrAHl9Q78XRfCEYjQNnl1fCd5YRAj5CHdOowAUxz1QH0EEdxaN2RuUgGUFDru6OTYA0sfmDaIn1lju0YTs2cgCnLtmEMX64ypbQXNdwLC/Anf2Wr1SljGSlhhC2WquZRBlxPBWsDe2kLj0opHr1Yd6U9BfA0g/zEdMcGlpA+TnoB8zSf/Qe/BpL+Ng0ta9b4+cs/Rq4a3uCXYfOCJDKFFsRXIr7yInYA8urwT+cMyY/2010FvloYdyJk2yM/e2gvL8IY4xGCROlvt9lhj27Xp01GrX0dvr6AkDr5Lw5s/XaOS7sm9MoR543bP4ZtB0t/fhvWvMMHblvg3RPbrdfZ+oR39fWT8tTI6+ZcWGxnIv1c73W2eRflY7NSj3+GPERm9Cd4slkpnx1dP7IiJo/qEarEpw6uO0q3q3mRkjn4mhqGTSdHedM9R5v7qzXmHX/3YZEUqJd91ZX2Qmlbnv3nW5UqxF70LlzOfuDbdPbwPkp6Afs/UoH0ZGqvEqM6899/nTPCx43ukznz3r+fdJBBGWbwJLewEw79nnht5PYVqbPIt/OGd5l9SYGe5GzkrQ/7gDY/xmci1ddXLQjcbOBJyOjNzFF6msx6Ay+gElLE6emYsbiDoqePfUwFkgMKEhCOXP9ioMjXvG0nXjqV3P5vBdnPkcioE9nYnJ2dD8KocfFQrPJgzM3gTG7VOQv7J5XtdDWy+TUFo3w3QOqiOB1elbOsZMCOaxFEzk4GLONrlrwnxpf0BEGL6Z7A9PmJk6m8wlqzrODfs203OT2WS1PQf5OejHPGIZf74SCfWcQbERQD2P72nVgQiObJPjl1Y/Km6tuoGjXwpIalqQrxlrKQvOvm6U8A8WeMk3dps3Di/NA+0opJ+QfsgIAsoIt0GMg9SPTwWMCp09D0+VzSP1gyZOcy5hRgSempvRUU0DsYHEPk0b1OSlbq1pTPFUptUYDV4Ro2zuOHMg8izgS9RXApOM9kZlo0mpJrdhUB4NtR7boUg/FX0HgPzKcBtF9t03AhIUyz2O6X+kR5DxxJqG/F3W2l+11lwxER1PIvIrkmo0udtRR/9D9CsB8uNT4wnK+U8k0hFM2vcM5dBM7WegNv0mAPJPJl77JwOs2hkt22TQ/w5A/uEIIiLyz2n5upp2mrI2/cwAaVObfgJqA6RNbWoDpE1tagOkTW1qA6RNbfoGtQHSpjZ9g9oAaVObvkFtgLSpTd+gNkDa1KZvUBsgbWrTN6gNkDa16RvUBkib2vQNagOkTX9rrw5SAIICAIiGrFzG/U+nkFKarP7qvTtMQxAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIBIFAEAgEgUAQCASBQBAIhAGBLBNwWxwE/h9k31bgse1PIGchwMt8BwJ8EAgIBAQCF4HASAc3SYxCPexITQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from IPython.display import display, Image\n",
+ "\n",
+ "url = \"https://d25zcttzf44i59.cloudfront.net/minimalist-resume-template.png\"\n",
+ "\n",
+ "display(Image(url))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CD-m8EvasgQl"
+ },
+ "source": [
+ "We can now extract the person's details using Idefics2-8b:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "hoXr3TuurmL8",
+ "outputId": "aa4e41ee-1ee4-42c2-9646-ee2e934ec441"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " name: Justine Debowski\n",
+ "email: justinedeb@email.com\n",
+ "phone_number: (123) 456-7890\n",
+ "current_company: IMA Financial Group, Inc.\n",
+ "experience:\n",
+ " - Lead Insurance Data Analyst\n",
+ " - Pie Insurance\n",
+ "education:\n",
+ " - Colorado College\n",
+ " - Boulder College\n",
+ " - Metropolitan State University of Denver\n",
+ " - University of Colorado at Denver.\n"
+ ]
+ }
+ ],
+ "source": [
+ "hf_mm_llm = HuggingFaceMMLLM()\n",
+ "\n",
+ "query = \"Extract name, email, phone number, current company, a summary of experience, and a summary of education from this cv. Provide your output in YAML format.\"\n",
+ "\n",
+ "user_data = hf_mm_llm.complete(query=query, url=url)\n",
+ "\n",
+ "print(user_data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "obYnPMAOsl9F"
+ },
+ "source": [
+ "Our class defined above takes URL as inputs. This seems to be because Hugging Face API only accepts images through URL `prompt_with_image = SYSTEM_PROMPT + f\"User: {query}\\nAssistant:\"`.\n",
+ "\n",
+ "We provide a workaround by using Cloudinary to upload an image first and then get the URL of the uploaded image to Hugging Face API.\n",
+ "\n",
+ "You will need to look at https://cloudinary.com/documentation/image_upload_api_reference for more information to get your credentials."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "cP_7DKcLsA0N"
+ },
+ "outputs": [],
+ "source": [
+ "# Uncomment the example below to drop your images and try with them\n",
+ "\n",
+ "# !pip install cloudinary\n",
+ "# !wget https://i.ibb.co/HDV3m97/Business-Resume.png\n",
+ "\n",
+ "# file_path = \"Business-Resume.png\"\n",
+ "# response = hf_mm_llm.complete(query=query, file_path=file_path)\n",
+ "\n",
+ "# print(user_data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Z1BUQ_qmtRMC"
+ },
+ "source": [
+ "# AI Web Agent building with LaVague\n",
+ "\n",
+ "Here we will define and run an agent using LaVague.\n",
+ "\n",
+ "LaVague has two main components:\n",
+ "- **A World Model**: Module specialized in reasoning, which takes as input the user’s objective (\"Fill this form\") and the screenshot of the web driver, and produces instructions (\"Click on Apply button\") to our action engine. It is powered by OpenAI GPT-4o.\n",
+ "- **An Action Engine**: Module specialized in turning instructions from the World Model into Selenium code. It is powered by [Llama Index](https://docs.llamaindex.ai/en/stable/) to perform RAG on the HTML.\n",
+ "\n",
+ "For this demo, we will use a local embedding model ([bge-small](https://huggingface.co/BAAI/bge-small-en-v1.5)) and GPT-3.5 for our Action Engine."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "5f47df4d42d3478f907db02257b0d7f0",
+ "326e36b5be1a48d09fe827883faf134e",
+ "a8399b00df9c4e019c7ff4ba7f6aaa7d",
+ "c901d0374d284cc99ed5346b5331dab7",
+ "c866bcdc79f2463b806c196ec21f1eb2",
+ "fb7e30045c3242d38eaa45c243a37cd9",
+ "f83b40f450c844f19224759f3df1d17a",
+ "ff9e0c35e6c54d5cb8f4f287265c9492",
+ "62c7e8d8539843bf92cfaa70b4d9c797",
+ "e1ce3f7fc11c4c4ebe93028a57ba5008",
+ "8ddd45034b134f39bd442e8059dfa503",
+ "cc9474e4b466448f9c41d033d70cb686",
+ "677a81525ec14a999f5c7f26def5f30e",
+ "11f3879ec38b4cb098c7d6498f124ae6",
+ "6713314c12fc4e81b1e0ffb462a34c4c",
+ "65db877a12c248daa3c54df54c1f9fbc",
+ "40076e71fa0d46e2ad038324d63f88b8",
+ "5d226287ccf74b4c826ee26078051602",
+ "79f378fcc97f4d98bd8344760f2697ee",
+ "f56cf3fbda9d47ba89002d704ae76a0e",
+ "450c6bb7c7184b8e8342dc3999f4ec7f",
+ "aad75fc5e6064fdcacb6e7e38ed095ea",
+ "c444965db06b4e5b94bfe3f71e983e2f",
+ "bdec1daa3eb24e268327d6c7fc2ce9a5",
+ "4fb73d95c1164ca2a9519c6a27e7957d",
+ "750b9eb4e0ca48aab05ec1e88bc1a46b",
+ "59d556a2ddc94820bb7f572289087103",
+ "d8ab4d895553470ca9702aba5e28821f",
+ "cfcfcdc86f1f4b20bd5b6c0aa5eadfd1",
+ "65ade782d2584dd29c3f879232828aad",
+ "d86ae6008e084a63b053ec77d7c2b96c",
+ "0d93652035a148e1996af6e74dc4caba",
+ "158f97a3e94e49479ed8aa64c4de7e5e",
+ "a13cd161407b44bfaedc7ed600c71e73",
+ "aad528c411b4424a9acb7d6280a694bd",
+ "a30f33178a774af1af6d608a8c365f6c",
+ "48cdca310f174bc18d9cce37d0266d5c",
+ "3037ed34510d43fe97a05b932c2d7437",
+ "174b1d52a77345adb33d5e5ae7cb8296",
+ "58efc67986c64507a7cc1e9fd0e8387b",
+ "1c5cf4088c734078932d7900c0ccbb9e",
+ "ff418b407704482ca2aeb14b9a98f8f3",
+ "96f8b07e6c3c4917a632ad1b81c6eeb9",
+ "81ee7d0725294a8c8ab6a4d3f57b8adf",
+ "8ce4addf67a242b28166545e2372ea73",
+ "42a20877a3c94f2a955fdf513916ced9",
+ "1f8950dd4f18421687f5805eac0de732",
+ "1104ab3feec743c4b7fd765965edc2e4",
+ "4834b04d46a64d57af17a91c3518dc40",
+ "81149453080e46d28df04be03afb771e",
+ "1b841a64214c415887b6f28cc0b2683b",
+ "dab379fa9d6047e7922dbf38a5bd1e8a",
+ "12b3e03f3ce44957a383afc4da7cee5b",
+ "50121181ae22418ca23ba782f31fd88c",
+ "c9058ed83f5b42d3a196462b95e6cc92",
+ "bf6442f0263c47a78d488b1213e5108a",
+ "763d29304b0a40ce8738d3c69f01997c",
+ "42af719f6e3247efb9811f8105b0525c",
+ "f03861fb24d44568bf43dba16b454614",
+ "0c60920cf1ba442e9460bce27484d11f",
+ "6d54f045d9c74453aceb66d3200c4271",
+ "ad02fb18811f4b81b5cd1b2294277427",
+ "59ad09abdf80426192e02b3e6a7c3bdc",
+ "61a476c7300743c9ac6ab71dfaf248cb",
+ "633e047d64904d8785129c1541288937",
+ "b1acb64248b541b88c764543b1dcb895",
+ "6ac9f946fe194f7bb222fcfca8e5ca84",
+ "87065cd3812e4cbc94397e3629f3642c",
+ "583f7e9337494e9cabb77b17acf45d47",
+ "59030126571349478d8240c6249996e7",
+ "b8ccf73efa7c455b81a6cbd34ff34653",
+ "6f01b2d2620c428884fe440160dd878b",
+ "ca58204a1fdc4b738ea58fb652516f17",
+ "cd3614ffc4764104af2d6f305f9828b2",
+ "eae21f68c08b459f9f938c2ded7d4a55",
+ "5a9d68f0842542b6aff65a1d62b6627b",
+ "125b2cfe4e914f89abf53e7d2669fa82",
+ "d137a6f3a13e40339e7c1dae13d8e4f6",
+ "36604a7ea34b4091847151dc40cbe7a4",
+ "a1c6348f85e94fa8992d07e3a52ea740",
+ "5d361c537ea248459e8658724b9ec7ac",
+ "f93b223315c046d38bed527a5ba6b869",
+ "a46ffc9e6adc4033ba9597815e4a86c0",
+ "5a8d202159f74896a4751329bd48916e",
+ "921db248e4dc4f5a93014ac421c3aed0",
+ "1f40369589de4b799c5bc768cd162663",
+ "db676d96ab7c456ab6e2ad0e46cca895",
+ "d1bac09f17ee45718a300ee88ae26f64",
+ "fc5fd8b70c1343a28d758bc83f067520",
+ "5de44caa2507475b9dac7e2161e5f7a3",
+ "5e5c14b4bf6e4d14b102758a5ddc2aed",
+ "08857a7b098d4be9ba288f5eaca13aaf",
+ "14efeeb1e3d840f19122aad78a612c43",
+ "ee03258e71e14ad5aac769dbd4517f33",
+ "37aaffa990dc4a639909c4458bb53e41",
+ "fc14ab6e26484ff5904ab58d7793664d",
+ "bbb8f799c8724960be1e0f6868de7740",
+ "91b05e3424aa4a42be3335395d443a9d",
+ "a91df417c3bc4c1b95032a242b9f3a56",
+ "880f6f4f4cfb483895ff8d514df859ba",
+ "d01b32ad4b2646b6803fae549d04ffe5",
+ "7c823e934f2f48beb29a1515d9a17889",
+ "59039af645e34c1caf9966a2bf86e33f",
+ "0324bacbc8a443e2b8f87b7ed4f7cd6c",
+ "e675e055ef6d4e0ba1580d57b33e7cd5",
+ "1e463694d5314475a6291c6824bbbdfc",
+ "baf0f995d4104a4481c919a8d0106b4c",
+ "ee8e9ac5d1364c68973fb833a7115809",
+ "a1cbf252b0824ffd8df6d7ba80d7e1c2",
+ "ddf18076880e4719a9c214882edbbf45",
+ "774215b009e94541a26752d2c1e618ef",
+ "383c470a746d4bfcb27957efe3b5e1d9",
+ "8f07215032f74effb3337733ba0906e7",
+ "71936fa193df4f92b9678316cb7d75db",
+ "a62a894faa194e10a9bfc892f65752f2",
+ "a81f205a336e404e8cefc4f3e9a527af",
+ "d7af56908ad6413b9d0cbdd800639314",
+ "2fcdb4438cb0468e9752d4d134bec7d9",
+ "e2dbb9d991a34f2ca3ede807dd2e1405",
+ "63b90103559b45238098da1094dfc155",
+ "c7544d5cacec4375b81e3e5108ed7a70"
+ ]
+ },
+ "id": "b1C8i3mk0oTX",
+ "outputId": "c44e03a5-4432-45bb-9c90-202348bef471"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: llama-index-embeddings-huggingface in /usr/local/lib/python3.10/dist-packages (0.2.0)\n",
+ "Requirement already satisfied: huggingface-hub[inference]>=0.19.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-embeddings-huggingface) (0.23.0)\n",
+ "Requirement already satisfied: llama-index-core<0.11.0,>=0.10.1 in /usr/local/lib/python3.10/dist-packages (from llama-index-embeddings-huggingface) (0.10.38.post2)\n",
+ "Requirement already satisfied: sentence-transformers<3.0.0,>=2.6.1 in /usr/local/lib/python3.10/dist-packages (from llama-index-embeddings-huggingface) (2.7.0)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (3.14.0)\n",
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (2023.6.0)\n",
+ "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (23.2)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (6.0.1)\n",
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (2.31.0)\n",
+ "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (4.66.4)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (4.11.0)\n",
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (3.9.5)\n",
+ "Requirement already satisfied: minijinja>=1.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (2.0.1)\n",
+ "Requirement already satisfied: SQLAlchemy[asyncio]>=1.4.49 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2.0.30)\n",
+ "Requirement already satisfied: dataclasses-json in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.6.6)\n",
+ "Requirement already satisfied: deprecated>=1.2.9.3 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.2.14)\n",
+ "Requirement already satisfied: dirtyjson<2.0.0,>=1.0.8 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.0.8)\n",
+ "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.27.0)\n",
+ "Requirement already satisfied: llamaindex-py-client<0.2.0,>=0.1.18 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.1.19)\n",
+ "Requirement already satisfied: nest-asyncio<2.0.0,>=1.5.8 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.6.0)\n",
+ "Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.3)\n",
+ "Requirement already satisfied: nltk<4.0.0,>=3.8.1 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.8.1)\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.25.2)\n",
+ "Requirement already satisfied: openai>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.30.2)\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2.0.3)\n",
+ "Requirement already satisfied: pillow>=9.0.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (9.4.0)\n",
+ "Requirement already satisfied: tenacity<9.0.0,>=8.2.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (8.3.0)\n",
+ "Requirement already satisfied: tiktoken>=0.3.3 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.7.0)\n",
+ "Requirement already satisfied: typing-inspect>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.9.0)\n",
+ "Requirement already satisfied: wrapt in /usr/local/lib/python3.10/dist-packages (from llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.14.1)\n",
+ "Requirement already satisfied: transformers<5.0.0,>=4.34.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (4.41.0)\n",
+ "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (2.3.0+cu121)\n",
+ "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (1.2.2)\n",
+ "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (1.11.4)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (1.3.1)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (23.2.0)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (1.4.1)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (6.0.5)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (1.9.4)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (4.0.3)\n",
+ "Requirement already satisfied: pydantic>=1.10 in /usr/local/lib/python3.10/dist-packages (from llamaindex-py-client<0.2.0,>=0.1.18->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2.7.1)\n",
+ "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.7.1)\n",
+ "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2024.2.2)\n",
+ "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.0.5)\n",
+ "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.7)\n",
+ "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.3.1)\n",
+ "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.14.0)\n",
+ "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (8.1.7)\n",
+ "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.4.2)\n",
+ "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2023.12.25)\n",
+ "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai>=1.1.0->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.7.0)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (3.3.2)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub[inference]>=0.19.0->llama-index-embeddings-huggingface) (2.0.7)\n",
+ "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy[asyncio]>=1.4.49->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.0.3)\n",
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (1.12)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (3.1.4)\n",
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (8.9.2.26)\n",
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.3.1)\n",
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (11.0.2.54)\n",
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (10.3.2.106)\n",
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (11.4.5.107)\n",
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.0.106)\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (2.20.5)\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.1.105)\n",
+ "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (2.3.0)\n",
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (12.5.40)\n",
+ "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.34.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (0.19.1)\n",
+ "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.34.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (0.4.3)\n",
+ "Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from typing-inspect>=0.8.0->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.0.0)\n",
+ "Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /usr/local/lib/python3.10/dist-packages (from dataclasses-json->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (3.21.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2023.4)\n",
+ "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2024.1)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (3.5.0)\n",
+ "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.2.1)\n",
+ "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->llamaindex-py-client<0.2.0,>=0.1.18->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (0.6.0)\n",
+ "Requirement already satisfied: pydantic-core==2.18.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->llamaindex-py-client<0.2.0,>=0.1.18->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (2.18.2)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-index-core<0.11.0,>=0.10.1->llama-index-embeddings-huggingface) (1.16.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (2.1.5)\n",
+ "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.11.0->sentence-transformers<3.0.0,>=2.6.1->llama-index-embeddings-huggingface) (1.3.0)\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "5f47df4d42d3478f907db02257b0d7f0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "modules.json: 0%| | 0.00/349 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "cc9474e4b466448f9c41d033d70cb686",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "config_sentence_transformers.json: 0%| | 0.00/124 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c444965db06b4e5b94bfe3f71e983e2f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "README.md: 0%| | 0.00/94.8k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a13cd161407b44bfaedc7ed600c71e73",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "sentence_bert_config.json: 0%| | 0.00/52.0 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8ce4addf67a242b28166545e2372ea73",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "config.json: 0%| | 0.00/743 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "bf6442f0263c47a78d488b1213e5108a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model.safetensors: 0%| | 0.00/133M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "6ac9f946fe194f7bb222fcfca8e5ca84",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/366 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d137a6f3a13e40339e7c1dae13d8e4f6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "fc5fd8b70c1343a28d758bc83f067520",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/711k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "880f6f4f4cfb483895ff8d514df859ba",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "special_tokens_map.json: 0%| | 0.00/125 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "774215b009e94541a26752d2c1e618ef",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "1_Pooling/config.json: 0%| | 0.00/190 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "!pip install llama-index-embeddings-huggingface\n",
+ "\n",
+ "from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
+ "\n",
+ "embedding = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "b4QRDB7Gtl-3"
+ },
+ "source": [
+ "We can now run the model using the previously extracted data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "lJ1VaTZNoS6T",
+ "outputId": "ec84c4e2-0f34-4716-8fd8-5f5546887ff3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAIAAADwf7zUAABlrklEQVR4nO3dd3xV5cHA8XNHJlnssDfIFAeKA/deoNbdumur1WqrtWprX1tbW1s7bLXDOmsdde+9ByqiIIjK3nsFCGSQ8f6RmsYkDBW4Ic/3++GP8OTcc597s87vnnFjs4oqIwAAIAzxVE8AAADYdgQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAQkmeoJ0Lhu+doMANi+zV5Vleop0AhbmQAAEBABAAAAAREATVF1dXWqpwAA8HXZpGmaBECTU11d7acFAGgGbNU0TQKgKfKjAgA0AzZpmiYB0ORoZQCgebBV0zQJgKal5ofEjwoA0AzYsGmaBEBT5OcEAGgGbNI0TQKgyfGjAgA0GzZsmiABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEJBkqicA0Dytqlg7fvWMpeWrKqPqVM9l+5MWS7RMy9k5r1d+skWq5wLQ3AgAgC1sTUXJ72Y+fMf8lyqqKlI9l+1bZjz91E77XdHjhNxkVqrnAtB8xGYVVaZ6DvxPdXV1VVVVZWVln7aZqZ4L8FUUrV878sNfTFk7P9UTaT4G5HR5eKefFqTZFQDbn6lLSxOJRDwej8ViqZ4L/+McAIAt6WdT/23rf8v6pHjuFVPuSPUsAJoPAQCwxUxft/DBRW+mehbN0OOL351XuizVswBoJgQAwBbz+oqPUz2FZuvl5eNTPQWAZkIAAGwx80qXpnoKzdbskiWpngJAMyEAALaYimqXVdhaKqo8twBbhgAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAANkurtJy26fmpngUAX1cy1RMAoKmLR7Gf9j75/K5HRlH0n4Vv/Oiz29ZXV6Z6UgB8RfYAALAJ3+16RM3WfxRFJ3XY55SO+6V0OgB8LQIAgI0Z2X741b1PqTvSM7swVZMB4OsTAABs0LD8Pn8feGHdkeqo+t2Vn6VqPgB8fQIAYMuorKoqKatI9Sy2pJ5ZhfcOvbze4J3zXnpu2QfbfjJV1dXb/k4BmiUBALAFrCoueeHdqQuWrk71RLaY3GTWk7v+X04iq+7gk0veu2rKXSmZz8wFKyfPXlpRWZWSewdoTlwFCOBrqaiomjBt4exFRameyJaUnch4YOiVrdJy6w5+tnbeeR//JVVTiqLok5lLpsxZNmJo9/yczFgslsKZAGzXBADAV1RdXb1k5doxk+Y2s5elk7HEnYN/MDSvZ93BOSVLjh57TYpm9D8VlVWvfjCjY5u8nXfomJZMpHo6ANslAQDwVZStr3j/k3lLV65N9US2sHgsfk2fU0e0GlR3cG1l6cgPry2uLE3VrOpZsGz1grdW79q/c+d2eXYFAHxZAgDgy6mqrp69YOX4qQtTPZGt4oqe3zin86F1R0qryk8Y9+tFZStTNaUNGfvpvMmz04cP7paTlZ7quQBsTwQAwJewZl3ZWx/NKm1eV/updWTbYRd1O6buSFV11XkT/zxu9fRUTWnj1qwrf/G9qYN6tu/ZqVUi4bIWAJtFAABslsqq6k9nLp46d3mqJ7JB8Vhshxad+7fo+lbRpMVlRV/25vu1Gnzr4IvrjlRVV10z7Z4Xl4/fUjPcSj6esfiz2Uv32alHfk5mqucCsB0QAACbtmL1utETZq+vaNIn+/6k18kXdD2y5uOLP/nHA4ve3Pzbds5sc9eQH9Yb/PucZ/459/ktNr+tqaKy6pWx0zu2ydulf6ekXQEAGyUAADZmfUXlmElzlzT5k32zExm1W/9RFN044DtLyoteWzFxc27bKi33ld1/nR5Pqzv47NKx106/fwvPcitbsGz1gjdX7zawS8c2ec4NBtgQL5MANK66unru4lVPvfVZ09/6j6IoEYtXVn9hB8VdQy7tkVW4yRtmxNP+M/SK3C++4dd7RZPPnvinLTvDbWbMpLmvjJ22rrQ81RMBaKIEAEAjSsrWvzhm6thP56V6IptrTUXJ/QvfqDuSHk8+P+zaem/mVU8ylnh4p58Myu1Wd3BB2fJvTbhhq8xyW1m9tuz5d6d+OmtJZVWTPmoLICUcAgTQiHcmzq6sqs7M+HK/JOPlsahyK81o0y777NY+2R12K+hXO5KbzHpk558c8v7V5VXrGy4fj2K/6XfmLvm96w6uqli733tXrKko2erT/ZKSiXhm2pf7csxauHLB0tUHDuu96UUBQiIAABrRoWX2jIWryr/kWb9V1dVbaT6b6YTxv353jz90yGhVO9KvReeHd7rquA9/ub76C2kSi2I/6X3yaR33rztYXlVxwrhfN8Gt/yiKKiqrSqu+9NVXm+sFWwG+DocAATQiMz05oFvrdgXZ29cbzZZXVez73o9XVXzhpIVd8/tc1+/MWPSFB3Js+z3rnjQcRVFlddWpH10/cc2sbTBPAFJIAABsUMfWLQZ1b52Zlkj1RL6ENRUlIz+4dv0XXyz/Zsf9f9L7pNoCOKj10JsHnl93geqo+v+m/vvtlZ9uq2luC2nJ+JDeHVI9C4AmRwAAbEwiHtuha6vu7fPi28+ugMlr553y0W8rvnjMz/e6HnV6pwOjKOqa2fbuHS+rd5MbZjx827wXtt0Ut7JYLNapbd4uO3TOzkzb9NIAgREAAJtWkJMxpGeb/OyMVE9kc7298pOrptxVHX3hnITf9DvrhMK9X9rtV/UWfmbp2D/MemzbTW4ry85M27V/py7tC1I9EYAmyknAAJurR4e80vKK6QtWra/cDi4ueff8V/KT2Vf1Ornunos/D/huvcVeXTHhnO32kv/1xGOxPl3btMzN2vSiAAGzBwDgS8hMTw7s3rpNXuZ2cUDQTbOfenzxOxtZYG7p0rMm/HGbzWerapmbteuAzrb+ATZJAAB8aZ3b5g7q3iYtuR38Cj1/0s2vrZjY6KeWla86aMxVZY29RcD2JZmID+pV2K9b2+3oPA2AFNoO/noBNEGJeGxgt9bd2uc2/W3OU8ZfP690Wb3ByuqqkR9cu7pJXvJ/88ViUcc2ubv275yTlZ7quQBsNwQAwFfXMidzx55t87Kb+tbngWOuWr5+de1/q6qrjh/3qxkli1I4pa8vKyO5c79OXQtbpnoiANsZAQDwdfXskN+vS8tkoun+Rl1dsW7/965cU7GuKqpeX1150ad/f69ocqon9dXFYrHenVvv2KdjWnJ7eosGgCbCVYAAtoCs9OSg7q17L2772upY1RcvvtlELC1f1feN81I9iy0gt0VG/+7tHO4P8JU13derALY7Z7Y/6Llev2yZyEn1RJqnRDw2qFfhwB7tbf0DfB0CAGBLyolnPd3zF1e3PzUe2UjdYmJRrH+bjsMGdHGyL8DXJwAAtrzD83Z9q8/vd83uk+qJNAdd0ts8ucO153Q4LNUTAWgmnAMAsLX8udP5U8vmXzTvr6urtu+rbaZKLIpd1vEbp7Q5INUTAWhW7AEA2Ir6ZHR6rtevjsgbluqJbH+GZPd4Z/CNtv4BtrjYrKLKVM+B/6murq6qqqqsrOzTNjPVc4GgzZy7ZMuucE1lyfGzri2uKt2yq22WMmJpt/T6weDsHltkbR3a5G6R9QBfwdSlpYlEIh6Px5y735TYAwCwLeQmsl7odd1V7U9O9USauuNb7T168I1bausfgIacAwCw7RyVt9sRecMumvfXcSXTUz2XJqd1Mu+O3pd1Tm+b6okANHMCAGCbikexmzt/76OSGT9acKsjgmr9sMPxp7U9MObaqQBbn0OAAFJgx6yez/X65WG5u6R6Iqk3KLv7W4P++M22B9n6B9g2nATctDgJGJqILX4S8IasrCw+adZ1Ye4KyIil/bH7d3fP7b9VN/2dBAwp5CTgpskeAIBUapnIea7Xr37c7oRUT2RbOzhv5zcH/XF47gAv/ANsY84BAEixeBQbmb/HgblDL19w2/iSGamezlaXG8+6q8/l3TMKUz0RgEAJAIAmISeedXPnCz8smXrlgjua8RFBFxeO+mbbgxMx+58BUsavYICmIhZFu2T1ebrntQfn7pTquWx5fTI7vjrwhjPaHWrrHyC1/BYGaFrSYomfF37rsR4/y4k3n4sB/K7bt+/r+9P8RItUTwQAAQDQJLVLFjzb85eXtj0+1RP5uvbOHfTOoD8fmL9z3Mm+AE2DcwAAmqhELH58wV4H5Q798cLbJ5TMTPV0vrSceNatvX7YJ6uzDX+AJsUeAIAmLT/R4m+dL/xDp/NabFdHBH273eEvD/xtX1v/AE2PAABo6mJRbHj2Dk/1/PmBOUNTPZdN65re9ukdfnV+4TFpMTuZAZoiAQCwfciIpf2iw+kPdf9JU94V8PMupz/c75oO6a1SPREANkgAAGw3YlHUMa31Mz2vvaTtqFTPpb49cwe8NeiPR7fcw1U+AZo4+2cBtjNpscSJBfscmDP0soW3Ti6dl+rpRDnxzL/1vHhAdreY6/wAbA+8TgOwXWqdzLu9yw9+2/Hs9JQean9amwNeGHD9wOzutv4BthcCAGB7FYtie7cY9GzPa/fPGbLt770wreDxfr+4tOMJmfH0bX/vAHxlDgEC2L5lxTN+2eGMOeVLz537x7VVZdvmTq/ufNrRLfdIxhLb5u4A2ILsAQDY7sWiWLf0dk/3vPZ7bY7e2ve1c4s+rw684dhWe9v6B9hO2QMA0Eykx5Kntdz/oNyhP15w+5Sy+Vtj/X/u8b1dc/rFHe4PsD2zBwCgWWmfbHl71x/+qsMZW/bk4KNbDn9l4A275exg6x9ge2cPAEBzE49i++fsOKxnv18uuveNtR9/zbW1Tyu4ucf3e2Z22CJzAyDlBABA85QTz/x1x7Omly387ry/rPuqJwdf0emkUa32So+lbdm5AZBCDgECaLZiUax3Rsene/7iu62P+LK33Sm719M7/PLE1vvZ+gdoZuwBAGjmMmJpp7c66MDcna5ceMe0sgWbXD49lry265kH5u0Uj3mRCKAZ8ssdIAid0lrf2fWHPy/8ZtpGTw4+omC3lwb89uD8XWz9AzRX9gAAhCIexQ/O3Xn37B1+ufi+t9ZOqvfZtsn8G3t8r19W55jr/AA0awIAICx5iezrO549uXTehfP/Wnty8PcLR53UZv+seHpq5wbANiAAAIITi2I7ZHZ5ssfP7yt6bfS6T37d9dwuGW1TPSkAtpHYrKLKVM+B/6murq6qqqqsrOzTNjPVc4GgzZy7JNVT2BbS0tOjeCzRrA/379AmN9VTgHBNXVqaSCTi8Xgs5tjCJsQeAIAQJRKJZFqaP8kAARIAAGGJxWJp6enxeHN+1R+AjRAAAAFJJpPJNG/sBRA0AQAQhFg8np6WFvPCP0DwBABA85eWnp5IJFI9CwCaBAEA0JzFE4k0J/sCUIcAAGi20tPT4174B+CLBABAM5RIJpPJpBf+AWhIAAA0K67yCcDGCQCA5iMtLS2R9IsdgI3xdwKgOYgn4mlp6Y75AWCTBADAds9VPgHYfAIAYDvmZF8AviwBALBdcrIvAF+NAADY/iTT0pJO9gXgK/H3A2B7Eo/H09Kd7AvAVycAALYbTvYF4OsTAADbgUQikUxL88I/AF+fAABo0pzsC8CWJQAAmq5EMpmWlpbqWQDQrAgAgKbIyb4AbCUCAKDJcbIvAFuPAABoQpzsC8DWJgAAmgQn+wKwbQgAgNRzsi8A24wAAEileDyeTEvzwj8A24wAAEiZZFpaMun3MADblD88ACngKp8ApIoAANimYrFYWlpa3FU+AUgRAQCw7SSSyWQy6YV/AFJIAABsC7F4PM3JvgA0AQIAYKtzsi8ATYc/SABbkZN9AWhqBADAVhGLxZJpaQkn+wLQxAgAgC0vkUgk09K88A9AEyQAALakWCyWlp7uZF8AmiwBALDFJJPJZFpaqmcBABsjAAC2gHg8npaWFvPCPwBNngAA+Fqc7AvA9kUAADQiHo9VVVVvcjEn+zZxvjIADdlbDdCItLRNvD4Si8XS09Nd47+JS0vaMwNQnwAAaERei6yNfDaZTGZkZsYd9tPkZWc6JxugPgEA0IgW2ZlZmekNx+PxeHpGhkv9bBcy0hJZGb5SAPUJAIBGxGJRu9b59RogmZaWnpHhGv/bhcz0ZMu8je3GAQiWk4ABGhePxwrbFqwrKVu7rmx9ZWUi6WTf7UA8ihLJeHZGWka6P3AAjfP7EWBjsrMysrMyUj0LANhi7MgGAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICAJFM9AYAt6Vvn/GD8R5PqDb749D2F7dumZD6pUlFRudPww+sNdu7c4dnH7krJfABoOgQAsI18Nnn6CaedvzXWfPvffzds1x23xpr5Up557tUf//TX9QZjsdgD//7rDv16bf56Tjvz+xM+/qze4LBdhtz+jxu+7hRTpNEei6Lo+Sfv7tih/bafDxA4hwABsGUccdj+u+48pN5gdXX17/74j81fyTPPvdpw6z+RiF91+YVfd36pk0wm4vFG/uBmpKdv+8kACAAAtpirLr8wkaj/l2XM2PGvv/nu5ty8rKz8Tzfd1nD8lBNH9u7V/etPL4Ua3dZPzxAAQAoIAAC2mD69u598wjENx39/4z8rKio3efN/3fvwwkVL6g22blXwve+csWXmlzoZmY1s62cKACAVBAAAW9L3vntGq5YF9QZnzpr78GPPbPyGy1cU3XrH/Q3Hf/D9c3NysrfU9FKl0T0AaWlp234mAE4CBraRli3zG31tuFZZefmjjz/XcPzoIw9qkb2x7b927dp83cmx5eTmtLjkonN+9ovf1xv/6z/uPurwA1u02OCX8i9/vWPdupJ6gzsO7n/MkQdv+Vluc+kNAiDDy/9AiggAYBtp367NT368sfM4VxatajQAvved0zt1LNxq82LLG3X0IQ898nS9c3lXrCy69Y77L77w7EZvMnXarEefeL7eYCwW+8mPL4rFYltrottQZoNDgDIyMlIyEwCHAAGwhcVisasa23D/170PL1q0tNGb/O5P/6iqqqo3eMLxR/bfofdWmeI218gegHTH/wCpYQ8A0PzV3RKdNn3WY0++MPaDj2bPnV9aWpafl9umTevhu+10+KH7D+zfZ/PXubJo1YsvvTnh488+mzJ9+YqVxcVrKyoqcnNyCgry+u/Qe+ehgw47eL/8/NyNr+Tyn/z62edfrTvSrm3rl5+9r/a/y1cUPf7kC2+98/60abPWFBdnZ2W1bt1y0MB+hxy4z74jdt+CL41PnjL9W2f/oKS0tO5gWlraLTf/uuGVPTfHwP59jh91+EOPfuG4//Ly9TfefPuvr/1xvYXfeGvMO+9+UG8wPz/3++eftfF7Wbeu5I233nvv/fGfTZm+cOHiNcVrKyoqM9LTCwryOnUsHDig7x6777z7sJ2SycTG1/PAQ09d+5s/1xu8+MKzzz3z5A3d5OXX3r7ksp/XGzzjm9+47JLzGl2+4TkADgECUkUAAM1fMpmMoqi0tOw3N/z1kcefq66urv3U8hVFy1cUTZ4y/a5/P3TsMYdecdkF2dlZG1/bosVL//SX255/6fWGl7VZWbRqZdGqmbPmPvPcq7/9w9+PH3X4Dy46Nysrc0OravipVavX1H58z/2P3njzHSUl/9soX72mePWa4pmz5j759EtDdxz4y/+7rFvXTpt69Ju2bNmKC3/ws3pb/1EUXffzH321rf8aF3/v7BdefnN1nUcURdFTz778zVOPq9taFRWVv7/xlkZvvpGCWrt23b/ufeSufz+0du26ep8qKS0tWVS6cNGSsR9OuOvfD7Vr2/r887416uhDN5kBW1VGZv0DfhwCBKSKQ4CA5i89Pa2kpPTc8y9/+LFn62791/PoE89/75KrG24H1/XGW+8dc/w5Tz/3yiYvallevv6+B544/pTvNryuZa2GV4EsKytfv359FEXX/fam39zwt7pb//WM/2jSmeddOmfu/I1PY5NKS8su/OHPFi2uf2TOpZecd9gh+32dNRcU5H3/gjMbjt/wxfcFe/CRp2fMnFNvmQE79Dl+VCNvnVtjzNjxh48846//+FfDrf+Glixd/vNf/ekbp3533ryFmzXvraPhAT/eBQxIFQEANH9ZmRlX//yGjyZ+usklx3444S9/vXNDn33n3Q++f+n/bbwQ6pk7b8F3LryyuLjx7dT0xq4CuW5d6X0PPHHfA09scuXLlq24/KrrGh46v/mqq6t/cs3vJn0ypd74qSeNPPOb3/jKq611wnFH7tCvV73BsR9OeOW10TUfryle+9db/tXwhj+54qJG3zo3iqInnnrxOxdeubJo1ZeayfQZs0876+KGj3Sbabi5713AgFQRAEAzl5aW9vqb7z3/0hubufy9/3ms0ZeK165dd9U1v6usrL+1nZWZefQRB57/7W+efcaJ++0zvOFxJjNnzb31zvuixiQaOyhlxsw5f/jzPzdztpM+nfr0s69s5sIN/eVvd77Q4Jk5cL+9fnzp+V95nXXF4/GfXN7IpZ/++Jdba3ah3HLrPUVFq+t9dtTRhwwZtEOjKxz7wYSrf/H7Rne/pKWl9endfeehg7p369zobVesLLrwhz9reHfbRsPNfScBA6niHACgmUtPT7vx5ttrPt5rj11HHXNol04dVq8pfuOt9+5/8MmKiop6y1dWVj393CvfOfe0euMPPvrMsmUr6g12KGx3311/ad26Ze3I+I8mnfWdH9Vb7b/ve/S8s09teHZBoy9y//GmW0tLy6Io6tu7x6knj9qhb6/1FRUTJn56590PLm0wgSiKHn/qhaOPPGhDD38jnnzm5X/eXr9Mdhzc//pfXbmhV9+/gqE7Djz6yIOefPqluoOzZs974OGn9tl793v+83i95XNysi+56NxGV7Vq1Zof//TXDfd45Oa0+P73zjrmyINrn+HFS5bdcvu9Dzz0VL0lly1bcc2v/vin3/3fV388X1VmgyP+nQMApIoAAJq5tWvXzVy7Loqiq6+8+MTjj6wd32P3nQ8+cMS55/+45pj7ut58e0zDAHj62ZcbrvzSS86ru/UfRdHQHQceN+qwepueZWXl74z58MD99tqcCY8bPymKouNGHX71FRfVnL4cRdHQIQOOOuLAb551ydx5C+ot//4HE0pLyzIbnGO6ceM/mvR/1/6h3mC3rp1u+uO1W/zqNJd+/9uvvDa63vH6f/vn3W+Nfr/hk3/hd89o3aqg0fX8696HlyxdXm8wLy/3zlt+36d397qD7du1ufqK73fr0ul3XzzfIIqil199e8rUGX379Pzyj+Nr8UZgQNPhECAgCGefcWLdrf8aOw8ddPYZJzZceMq0mfXOFa6oqBw0oN+xIw+r92/3XYc2vPlew3dtODjxi++KtXE7DR34f1ddXLv1X6NVy4JrfnpJw4WrqqqmTZ+1+SuPomje/EXfv/SaehvfrVoW/P3P1xUU5H2pVW2O1q1bXnDet+oNFhWtfvPtMfUG+/bucfIJIxtdSWlp2X8eerLh+GWXnFdv67/W6acd3+hVjDbn/IotLiPDScBAU2EPAND85eXlfvfcbzb6qW8ce8Q/br2n3mBJSemKFUV1X9pPJhP/95NLNvPu2rdr03Bw+fKVm3nzKIouu+Q7jR6Es9uuQ7t07thwJ8C8+QsHDey3mSsvLl534Q+urncSbVZm5s1/urZz5w6bP8kv5dSTRj382LMNr/ZTz5WXfy+RaPyVqTffHrNq1Zp6g23atBp51MEbWeHppx0/9sMJ9QZfeOmNn1118TZ+g+HGDgESAEBq2AMANH+HHbLvhi7GX9i+bYfCdg3Hizfj+pIb0vBgjyiK1qxZu5k379mj64ZOgY2iaOehgxoObv5sKyurLrvyl9NnzK47GI/Hf/frqzY/Ib6CZDJxVWNnA9d1xGH7b+RtBz4YN7Hh4AH77rHx0xX2HL5LWoNLLa1eUzxr9ryNT2aLcwgQ0HTYAwA0f8M2+m5W3bp2anip/tKNXutzwcLF77734ZRpsxYsXFS8dl1ZaVndA4bKSssa3qSqenMv1rnrzoM38tmuXTo2HCxt7B4bdf3v//r2O2PrDZ5y4sh9RwzfzDV8ZbsPG3rIQfs0vOhQjayszEsvbvw9dGuM/2hSw8H+O2zizZszMtK7dulYL3iiKPr4kyk9unfZ+G23rIab+42GIsA2IACA5q97t41t6uXm5jQc3NDbhb33/vib/nbn+AmfbJGJNeorzXaD725W14IFixs9/P25F1+78Ltn5ORkb+YMv7IfXfKdN98a0+gbKZz/7W+2a9t6I7ddtGRZw8FGc6ieLp07NAyAZcvqn0y8tTUMgIYHBQFsGw4BApq/3NwWG/lso+/G1VBVVdW1v/nzuedfvlW3/qMNbOLXSv8aF4/f0FuGLV++8qa/3/mVV7v5Cgvbfuu04xofP7WR8boangAQRVGLFhv7yv53mexGwmb16uJN3nDLauyNwLwPAJAaAgBo/hKJRt5v68v61fV/aXhd+a1hi8z2y7rvgScmT5m+De6oY4f2DQfbtmld75JH9ZSXr2/4jg1RFGVuxmH0GY1dIHXtuq9+jsdX09gbgTkECEgNhwABbNq7Y8Y98PDTDcd3HjroW6ce13+H3vl5ebWH0EydNuu4kzd2OHvKZWdnrVtXUnekqqrq2l//+e7b/7SNr42zmdLT05LJZMMG2JyTHxo9nSMnZ9O7Djau0Xcj3oiGB/w4BAhIFXsAADbt7nsfaTh44P573XHLDQcdsHenjoV1D6Cvqvpym4bb2D577/7MY3ftNHRgvfGPJn762BPPp2RKm6PRNyhYU7zpaysVFzfyYn9B/qbf7qBeI9W/6zVf7iCijAbHbjXcJwCwbdgDALAJJSWlo9/9oOH4xd87u9FrUK5YUbTV5/SVJJPJy3/43VNOPCaKoisuu+Dkb11Y7+zhP/zl1gP22ys/PzdFE9yY9u3aLFu2ot7g7Dnzhu+208Zv2OgVP9u3b/uF/ze232PlylUNB2vNnDV34/dbz7Bdd3zjpQfrjjR6cgLANmAPAMAmLFy0pOHBJy1aZG/oOpIfffzp1p/UV1FY2LZm6z+KogE79Bl19CH1FigqWv2nm27b5vPaLEOH1N9lEUXRJ59N2/itiovXzZu/sOH4Tjt+YW0N36Y3iqLlKzb23m0fNHh/sY1LJpMtC/Lr/vs653MDfB0CAGATGn1FfyOnnz7z3KtbcTZbzsXfOzs7O6ve4MOPPTvx489SMp+Na/TtEV59bfTGj8V/9Y13Gl77qEvnjvUuOdroKQEfTfh0Q9dXnT5j9qRPp25ixgBNlQAA2IRGL8uzfEVRefn6huNPPv1SoweHlJaVb/mZfT2tW7f8zjmn1Rusrq7+5W/+sqELhqbQXnvu2vDYpJVFq5546oUN3aSqququfz/UcPzoIw6sN9KpQ2HDxVasLHrl9dGNrvn3N/5zE9MFaMKcAwCwCS1b5jc6/srrow87eN+6I598NvW6393U6MJN88SAb5167EOPPjN33oK6g598NvWBh586+YRjUjWrRmVlZp58wjH/uPWeeuN/vOm2XXYe0q1rp4Y3uenvdzW8tmlmZsbJJ9Z/aL16dk0mEw13Jvz6tzcPGtCvfbs2tSPV1dV/+POtb7495ktNvqKi8he/vrHh+C+u/uGXWg/AFmEPAMAmdO3SMS+vkfNif/eHv4//aFLNx8XF6/51z8NnnntpzTVnWrSof37nlKkzFi5asrWn+mWlpaVddkkjVyz98813LG96xfLNk49t06ZVvcGiotVnnnfpCy+9UVn5v70W8xcsuupn1//z9vsaruTs009sWVC/6NLS0nYf1sjJxIuXLDvxtAvu+vdDH0+aPGXqjKefe+X0c35w590PRlG0y06NHJK0IZWVlY8+/lzDf5u/BoAtyB4AgE2Ix+P7jtj9yadfqje+ZOnyb53zg7ZtWmVnZy1YuGT9+v8eEZSVmfnL/7vsB5f/ou7C1dXV377gx9847sjKiso9hu88YIc+22j2m3LAfnsO322nd8eMqzu4pnjt72+85bqfX56qWTWqoCDvt7+88twLflzvCKVly1ZcesUv8/Nze/XolkwmFy9ZOnvO/EbXMGyXIec1OOqpxqijD3n7nbENx1esLLrhT7fUG0wmkz+8+Nunnfn9euNN8NApgIbsAQDYtHPPPDmRaPwX5tJlK2bPmV+79R9F0c9+cvE+e++elZlZb8nZc+b//k+3/Omm26ZMnbkV5/rlXf7D8xtez/TJp1/6YNzElMxnI4btuuM1P7mk0a/FqlVrPhz/8Zix4ze09T9oYL8bfvPTDX0dDz143yGDdtjMaVzwnW/t0LdXw/HKyib9FhAANQQAwKb17NH1Rz/4zuYs+eNLzz/q8APT09OOOGz/rT2rLaVP7+4nHHdkw/Ff/uYvX/b9breBY0ce9o+bfvNl36zgyMMOuPOW37dqWbChBWKx2PW/vLLu4f4bcvQRB5575snp6WnJZP2zwxs9LxygqREAAJvltJOP/cXVP8zKqv+6fq3CwrZ/+/OvvnnKsTX/vfjCszt1bOTaMk3Thd89Iy83p97gtOmz7rn/0ZTMZ+N2Hzb02cf/dd45p27ky1Fr152H/OvWP/7ml1dkbOqddzt37nDnP/8wbNcdN7RAenraReef+aufXx6LxaLGLh5aUlK6GdMHSDHnAABsrmNHHnbAfns9/Nizo98dO23G7FWr1iQS8datWvbv1/vA/fc69OB96761U8uC/Pv+9Zdb77j/9TffXbhoSVVVVUFBft/ePfbaY9cRe+2WwkfRqIKCvAu+863f3PC3euN/veXuww7Zb3NeF9/GcnNaXHT+meeccdKYsR+9Nfr9Tz6bumJF0cqiVevXVxTk57ZsWdC5U+Hw3Xbec/gujV4gaEM6dyq8/e+/e2v0+y+89Mb4CZ8sX75y7bp1OTktevboutfwXUcdc2jdp6JlQX5R0eq6N19TvHaLPUKArSY2q6jJ7d4NWXV1dVVVVWVlZZ+2m35ZCwCgKZu6tDSRSMTj8Zr9ZjQRDgECAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAgZR5+7Jmf/N/vVq8urjtYWVn12z/8/aa/3VldXZ2qidV6a/T7l1913ddZw8JFSy678lczZs35Cre9698P/ePWf3+de6/r2l/f+OwLr26ptdW1ZefZRHz9L31djzz+3O/++I8ttTaAr0kAAClz+CH7J5OJZ55/pe7gW6PfX7ZsxXEjD4vFYqma2BaUn5d7/MjD2rRq9RVuu8fuO4/Ya/ctPiU2R++e3Y4deViqZwGwVQgAIGWys7OOOGz/sR9OnD1nfs3ImuK1L77yxp577NqxY2Fq57alZGdn7TF8l7y8nK9w2759eg7o32eLT4nNUVjYbo/dd071LAC2imSqJwAEbbddh455f/xjTz7//QvOisVizz7/aloy7bCD942iqKKi4rkXXhv30SfFxWtz83J2GTrokIP2TSTic+ctuPHmOy7+3lldOnesWcmvf3fzoIH9jj7ioEWLltxw4z/POv3EZ557JT097eLvnV33viorK595/tWPJnxaXLy2RYvsHQf3P+Kw/ZPJ5GtvvPPCS29e94vLaxYrKlr9y+v/cvbpJ/534zsWzZoz79HHn1u8eFleXu6hB++zy06Doyi6+95HqqOoR7cub7z1bnHxul69up1ywjGvvD76w/GTKioqdh46cNTRh8ZisYWLlvz+xn9e8J1v9ezetaho9RPPvDRjxuzSsrJWLQtG7LVbzSbmhsbv+vdDpaWl3zn3mzXLPPnMS1OmziwvL2/btvX+++5RM43FS5b97o//+O65p7359piZs+fGY/Edh/QfedQh8Xgjr+/EY/EXXn7znXfHlpSU9e7V/aQTjs7NaRFF0ZritU8989LUabPWlZQU5OfvtccuI/bareYm770/7o23xqxYUZSWnuzZo9uoow4pKMhr7CsZG/P++BdfeWvNmuIOhW2PP/aIzp061Hxi3EeT3njz3cVLlmdkpA3dceDhh+yfnp4WRVFlZdXLr7457qNPVhatKsjP32fv3fYcvkvNTa755R8P3H+volWrx380qbSsvGf3riccd2TDiPrXPQ/HYrG2bVu/8eZ73zzl2AH9+xQXr33ymZemz5izdu26Dh3aHXno/r16da9ZePac+U89+/K8eQuzs7N22nHgYYfsm0wmoyiaN3/hM8+/Om/+wsqKqj69exxz1EGtWhZEUfTW6PefeOrF31531U1/uzM9I/28s0+tvd9b77i/pLT0ovPP3MhDWLV6zYMPPz1txqyszAwhATQ1AgBIpVgsduzIw2+86bb3P5jQobDd+2M/OvnEYzIzM6IoeuSx5yZ+Mvn4kYd17txh9pz5jzz23Pr1FcccdfBG1pZIJqMoeuGl1/cdMbxz5w71Pvvqa6M/+HDiKSeNbNOq5ZKlyx985OlkMnnEYftvYoZR7ImnXjz4gBH5+bmvv/Hu/Q880bFD+w6F7RLx+NTps9q1aXXFZRcsWbr8j3+59c9/vXO/fYZffcVF06bPuuX2+/r367NDv151V/Wfh55YX1F59hknZWdnTpk689HHn2vVqqBfn54bGq+9YUVFxS2335tIJM781jfy8nLHjZ943wNPZGZkDBzQNxGPR1H0+FMvHj/q8LO6dZ46beY/bru3R/euQ4cMaPhYxk/4pG+fHmefcXJR0ar/PPzkCy+9fvyoI6IoeuChJ5csXX7ayaNyc3NmzZr70KPPFBTkDx7Yb8bMOQ8+8sw3jj2id69u69aWPPXsy3ff98hF55/ZcM1Lli4b99HHp5x4THV19aNPPH/Hvx688kcXJJPJjydNvuf+xw7Yd4/TTj526fIVDz3yzNq1JaeeNDKKoqeefendMeOOH3l4926dp06b+diTLyQS8d2H7RRFUSIRf+2Ndw49eL+rLr9ozZriG/96x4uvvHn8qMPrf7kTifkLFpWXrz/nzJMK27etqqq69Y77S0rLTjrh6LzcnNHvjv3nnfdf/L2zOxS2W7Gi6Jbb7h08aIcjDz9gzZq1Dz3ydPn69ceNPKyoaPXf/vnvHt26fPfb36qsqHjy6Zf+ceu9P/rBeTVtUGPHIQOfeualktLSrMzMKIpKSkunTpt51BEHbfwh3P/A40uXrTznzJPzcnPefmfsxI8/y87O2vh3GsA2IwCAFOvcqXCP4bs8+/wrBQX5PXt0rXlhe+3adWPHTTjq8AOH7jgwiqI2rVstWbrszbfe3/j2es1JA717dd9t1x0bfnbh4qUdCtvWbFi3bt3yu+eeFm3GaQaVVVUHHzCi/w69oyj6xnFHfvzJlPEfTepQ2C6KosqqyoMPHJFIJDoUtutQ2K6iorLmtd6+fXq2yM6ev3BRvQBYuGjp3nvs2rVLx5pH1KljYauW+RsZr/XZ5OlLli7/wUXndOpYGEXRIQftO2XarLdGvz9wQN+aBXYc3L97t85RFPXp3aN1q4J58xY2GgCZmRnHHnNYFEVdOneYOGnynLkLasZHHnVILB5v3aogiqJ2bVu//e7YKVNnDB7Yb9HipWnJ5LBdhiQSiah19K1Tj1u5clWjz1Jx8bpLLz6vZhv36CMP+uft982YOadvn56vvj66V4+uRxx2QBRFbdq0OuKw/e974IkjDt0/MzNj9DsfHLj/nrvuMqTmU3MXLHrltXdqtp6jKGrXtk3NF7GgIK9/317z5i9seKexKFq+fOWF3z2j5n4nT5k+b8Gi8889reZV/5FHHTJl6sw3R79/4nFHvvf+uLS05InHH1mzY6S8rHz6rDlRFI1+d2wsFp168qjsrMwoik49adSvrv/LRxM/rfkmrH1un3jqhU8/m7bz0EFRFE2aNKW6unrokP6lpWUbeghFq1ZPnT772GMO7dOrexRFxx5z6NRpMxt93gBSQgAAqXfYIftNmPjp/AWLfnjRuTUjCxYtqaqq7tq1U+0ynTt1LF+/ftmyFZtcW7cunRodH9C/z30PPPHvex8ZPLh/n17d27Vrs5nT69G9S80HmZkZ7du3Wbx0ec1/W7csSCQS//1URkZ2y/+9xJuZmV5WWtZwAi+/PnpdaVn/fr16dO/S7fNHt6HxWvMWLEpLJjt2aF870rlTh3HjP679b4c6n8rKzFxXWtroA6mJhBo5OS1qT71IT09/5fXR02fMKl5bElVXrVtX2rZ1qyiKevfsFsWiv/7jX8N2Hdq3d49WrQpycxs/maGwsG3tK9w1z//iJct79+o+d/7CQw/at3axXj27RVG0cNHi9PT0yqqqvr3/t5ejV4+uY94fX1ZWnpGRXv8RZWeuW9f4I2rbtnXt/c6euyCZSPTs2a3mv/F4vEePrgsXLIqiaO78hZ06FtYeFrXLzoN32XlwzU26du5Us/UfRVFBQV6rVi0XLlwc1QmAvLycnj26fjxpck0ATJj0We/e3XNzc6bPmL2hh7BkybIoimqKLoqiWCzWpXPH+QsWNfoQALY9AQCkXnZWZu+e3RYuXlpY2K5mpLS0LIqizIyM2mUyM9KjKCotL080dnR7XTVHEDW0y06DMzMy3n537H0PPF5VVTWwf9/jRh1ecxD85q8wPT29vLy85uNE8gu/QtO++N/qqP5lTI8fdXiHwnYfjpv4xlvvZWSk7zl858MO3j+RiG9ovPaGpaVl6enpdS+LlJmRXlZWXueuE1+4pw1cQbXm4PsasVgURdVRFFVWVv7zjnurqqpHHnVwu7Zt4vH4HXc/ULNMu3ZtLjr/zNdef+fp5155qKS0a5eOo446pGuDPomiKDMzs969lK8vX7++oqqq+vmXXn/x5TfrLrx6TXFuTk4URX/7579rH1TNVV/XrCnOyGgVRVFa2hcfUYMn8/P7/d+XpqysrKKy8sqrr68dqaqqys1tEUVRSUlpQX4jpy6UlZbNX7Doip/+pnakorKy3nVpoygaOmTAk8+8vH59RWVl5ZSpM2oORqp5/ht9CGXl66Mvfj9kZKRFAE2GAACaoqzMjCiKSsv+9yJ6aVl5FEVZmZnl5evrLbx+fcVmrnbggL4DB/QtLy//5LNpjz/14oMPP332GSfWOxBofUX9tZWXr6/ddC4vL89pkf1lHsr/JBKJEXvtNmKv3dasKR774cTnXngtp0WLfUcM39B47Q2zMjPKysuqq6trtzVLy8o31Dlf1uy58xcuWnrBed/q2aNrzcjatSWtWxbUfNyxQ/tTTx5VVVU1c9bcZ1947ba7/nP1ld9PJuv/7aiNoiiKar5AGenpaWnJRDw+Yq9hu+06tO7COTktFi1eGkXRqSeP6tC+bd1PbeAM482SmZGRTCZqdyLViMXjURS1aJFdt5f+d5PMjB7du3zj2CPqDqZnpNdbbPCgHR594vkpU2eUr18fRdHggTtEn7dHow9h+cqi6POIrVFSUn93EEAKuQwo0BR17NA+Ho/Nmj2vdmT27HmZmeltWreq2fAqKfnvMSFriteuXlP/JdtGfTxp8ooVRVEUpaenDx0yYPiwoQsXLYmiKDMjo3z9+srKyprFFixcXO+Gs2bPrfmgrKx8yZLl7b+4wbeZSkpLPxg3seZecnNz9t93j25dOy1ctHRD43Vv27lzx4qKynnz/3cMyew587o0OMv5q6lYXxFFUe2BNLNmz1uxsqj6v/cyv+ZLEI/He/XsdtjB+65dV9Los71o8dKSz487mjtvQRRF7du3jcfjnTsVrli5ql27NjX/WrUqSCQS2dlZHTu0TyYSxcVraz+VnZ3VokV2w7TYfF27dKyoqKyqqqpdZzItmZ+XG0VRp47tZ8+dXxuKH3w48eZ//Kuqqqprl45Ll69s3bpl7U2iWCyvwWFOOTktevfq/uln0yZNmty/X++a78CNPIS2bVpFUTT/82+kysrK6TNmf+XHBbDFCQCgKcrOztptl6GvvPb2x5MmryxaNfaDCW+/O3afvXZLJOItC/JaZGd9MG5iZWXVupLSx554Pjs7c9NrjKI33x5z932PTJ8xe/mKounTZ3008dNePbtGUdS5U2EURWPGfhRF0ZIly0a/M7burRLx+EuvvDVj1pxly1c88fSLlZWVO+848Cs8olgUe/SJ5x585Jn5CxYtX1E0bvykefMX9erZdUPjdW+7Q99e7du1eejRp+fMXbB8+cpnnnt17ryF+9TZRfB1dOzQPplMvDX6/dWriydPnfHoE8/17dNjydLla4rXTp4y/Y5/PThh4qfLl6+cv2DRW6Pfb1mQ37Igv+FKMjMyHnjoqUWLly5YtOSZ519tWZDfs3uXKIr222ePiR9/9vJrby9Zunz+gkX3PfDETX+/q7S0LDMzY/huOz3/0uvjP5pU8+X4x2333v/gE1/ngfTp3aNTx/b3PvDE9BmzV6woGjd+0h//fNvod8dGUbTHbrtUVVbd85/HZs2a+/GkyU89+3L7tm3i8fjw3XcuLyu//8En5y9YtHTZipdefvOGP/1jzrwFDVe+45D+k6dOnzx1Rs2ZAFEUbeQhtGpZ0K1rp1deGz156oz5CxY9+MgziTrHaD3w8FOPPfH813mkAF+TQ4CAJmrUMYdkZKY/8vhzxWvXFuTnH7T/3gfst2cURclk8uQTj3niqRev/vkNBQV5hx+6f9Gq1dVVjR8jXtc3Tz3uiade/Nc9j5SWlubm5Qzo1+fww/aLoqhzpw6HH7LfCy+/+dSzL3cobHfsMYf+8S+31RzPXVlZlZ6Rfvih+z/6xPOLFy8tKMg79eRRm3/2cF2ZmRnnnXXqM8+/+rd/3l1RUdmqZcEhB+8zbJcdoyja0HitRCL+7bNOeeLpF2+5/Z715RWFhW3P/OY3+nx+hfuvKSenxUnfOPqZ51794MOJnTt3OOmEY1avWnP3fY/8/Z///uH3v11ZWfnkMy+vXr0mMzOze7dO5551csN3aK6squrWrXPfPj1vvfP+NauLO3UqPOv0E2pOjx48aIdTTxr1yutvv/DiGzVrOP/b36x5Bf3oIw/OzMp86rlX1qwuzs3NGdC/zxGHbuKSrBsXj8fPPeuUp5556a57HiovX9+qZcFBB+y974jdoygqKMg796yTn3r25b/fdk+L7Kwdhww44tD9oihq1bLgu9/+5jPPvXzT3++Kx+Md2rc96/QTu3ft3HDlgwfu8Mhjz6WlJ2uuB1VjIw/htJNGPfjIU3fc9UBmZsYeu++8y06DJn48ueZTixYvzUh3SgCQSrFZRZWpngP/U11dXVVVVVlZ2aftZr2iCQDQZE1dWppIJOLxeMPXDkghhwABAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREADQ5sVgs1VMAANgybNg0QclUT4BGxGKx98atSPUsAAC+ltZdWqR6CjRCADQtsVisuro6FovtvlOrVM8FAOBrmb68PLIToOlxCFCTE4vF/JwAAM2ArZqmSQAAAEBABAAAAAREAAAAQEAEQJNTXV1dXV2d6lkAAHxdtmqaJgHQtNT8kPhRAQCaARs2TZMAaIr8nAAAzYBNmqZJADQ5flQAgGbDhk0TJAAAACAgAgAAAAIiAAAAICDJVE8AANjq1pQvenbqVVOXv1RcviTVc2G7lJPerk/rgw7vc11uemGq58LXJQAAoPl7avKPJix+MNWzYDtWXL5k3MJ7K6vWnzL47lTPha/LIUAA0PxNXv58qqdAc+AbqXkQAADQ/JVVrE71FGgOfCM1DwIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgyVRPAKhvyrTFd983Oh6P/fwno1I9ly9n+505QNPXKqvnKYP/VZgzeOLihx6YdE6qp8N2zB6AZuLa65+86pqHS0rKa0fmzF3+gx/fl8Ipbdyixas+nbww1bPYFm654/WLLrvnosvuefGVSRtZrO4T8srrn/bu1e7Ky47cJhP8nzlzl1902T2r15RGUVReXvn2u1Nrxq+9/slnnp+wOWvYUjN/6dVPfv7rx7/mSoCvqVVWz28MuOXKEdN/eeDqK0ZMO3XwPe1zBm6plf9wzwmH9LpmS61tO5KT3v7XB5XW/Ltkjw83ufB1B5X0bnVAzX9HdPt+57xdP1v2zEeLH9z6M6U5EwDNR2VV1ZPPfpTqWWyusR/O+mxKEAFw8jd2/9kVx7RulbPxxeo+ISWl5R0LCzIz0rb+7DZo5qylb787rebjHQd3SSQ363fFlpp5IhFPJPx2glRq12KHC3cfvUvH0+OxtJkr3yqrKB7c/vjzh71WmDP466+8dVavttl9v/56tkcVVaWfLH1yxsrXN2fh/m2PjEWx2v/mZnSMoujtOTdNXvbc1pofYXAIUPNxyIGDnnp2/B679erSuVW9T61cufaBR9+fMWtpWjLRs0fbE4/dLScn4+prHz3h2F2HDOoSRdFf//nKyqJ1P/nRUVEUzV+w8oYbn/vtL09MS0vUrmHpsjX/eXjMjFlLc3MyD9p/wIg9+5aWrv/RTx847aQ9HnvqwyMOGbLPXn1fe/OzN0dPXblybatWLb4xatcd+naIomjNmtIHHn1/6vTFFRWVPbu3Pen43Vu3avH08xNeeGVSLBaNmzDnFz8ZtXxF8YOPvj9z9rKqquqdhnT9xqhh6en/u+uSkvKrrnn4O+fsV7PCKIr+/LeXunVpPfKonaZNX/LYUx8uWrIqNydz6OCuRx8xNB6P3f/QmLLy9WeculfNwj/+2YOnnTh8yKAu1//hmV126v7u+9M7FBacc/qIus9Pw/W8+/70N96afMWlR0ZRNGv2st//5fmzvzVipx27RlH0zztf79ihZdcurR5+bOwRhwx5/e0pq1at69K51Rmn7dXohm9ebmaUm1l3c/bN0VNef2vyyqJ1bVvnHLDfgN126VH3CWlVkD1z1tLZc5a//e60a64a2ejXbuKkeY888cGeu/d+9oWJl1182LvvT1+7tiw9PTltxpJ168q+ceywVatK3hs7fdXqkn337nfogYO+7PfS5CmL/nbbq1VVVZdedf+PLj48KzOtXdu8KIqmTFv86JMfLF6yOiM9OXRI1+NH7Zqs87j+dPMLtTO/4odHbM63R3l55aNPfvDxJ/PXrivr3rXNaScNryklAQApd0Tf67OSBR8vefT+iWdUVpdHUTS883dG7nDjnl0veOST84/s+9u9u37/kU8v2KvrhUUlc+4cP6p7wV6H9v55h9wd11eue3/+nS9Ov6Y6qo6iaKcOp+7b7dJW2T3XlC16Z+5f35rzl0Htjj1tyH1RFO3f44phnc761Rvd8jI6Hd3vhu4Fe6Unsj9b9uzjn128bv2K2pkkYulX7TMrI5l77eudyipWR1H0rR0fHND26DvHjZy8/PmeLfc5ou/17VsMWF+17rOlzz415bJ161e0zOx2+d6T56/+8KYxe0ZRNKT9CacMvvuduX97YvIP+rc98vQdH35zzo2tsnr0brX/Na+2rfuo0+JZh/X51Y6FJ2Qm85evm/HS9F9MXPLInl0uOLrfHx6YdPa4hfd2yRt2wW5vRlH0y9c7r12/bN/ulx7W+1d3jT+2Z6v9RnS9+P6Jpw9qf1y/NoesLJnz2KcXzSx6s+ETW1qx6u6PTuiQM+T7w8fUDhZkdh25w596ttwnFkvMW/X+E5N/uKj442P6/XGPLudHUXTOzs9MWPxgfkanbgV7RlH0nV1f/mTpk3d/dEKjjz0jkXvN/kvnrR778ZLHDuhx5a0fHj64/fEjul78wKSzd+7wze4Fey5Y89E9E04Z0e2SYR3PXFO++MFJ356z6t0t/w1E0+ZPbPPRtnXufnvv8J9HxlRXV9cdr66O/n7bay2yM37+k1E//uERq1eX3PPAO1EU9endfsbMpVEUVVVVz5u/sry8Yu3asiiKps1Y0qN727pb/9XV1f+4/bXC9vm/+Omxp5+612NPjft08sKal4Q/GDfrB987ZPiwnh+Mm/38yx+fedpeN1x30sijdvrHba8tW14cRdFDj49dt67s6suPvvbq49LTkw8+OiaKoiMPHTJoQKf9Ruzwi5+Mqq6u/vttr7VpnXvtT4/7vytHFq1a98AjY+rOPysrffCgzmM+mFnz3+K1ZdNmLBm2S4+iVetuvuXlPXbv9ZtfnHDuGfu8N3bGa29+tpHnJ5GMj35v2onHDTv1xOF1xxtdT78+hQsWFZWWrq95Qtq3y5s+c0nN8tNnLu3XpzARj69aVbJoyeofXXzYz64YuWjxqnfHzNicL9O4CXOefGb8qScM/+21Jxx60OB/3z96ztzldZ+QS753SI9ubY88dMg1V43c0NcukYgXry1btqL4Z1ce075dXiIRHz9xzrCde/zkR0ftObzPvf95d/36ih//4IhzTt/n6ecm1HxZv5R+fQtHHrlT506tfn/dyYXt81u3zhnYv1MURXf8+829hve54VcnXf6DI2bNWfb2O1Pr3qruzDfz2+ORJz5YuKjososPu/7aE3p2b3vTP16u+e5NJuJJAQCpk4xn9ml1YBRFT0z+Yc3WfxRF7877x2/e7P3IJ+dHUVRRVRpF0YE9r1q0ZuKny55pldXz7J2fzM/s/MgnF0xY/ND+PX68e+fvRFHUNX/4CQNvi8XiD3/y3TVlC4/s+7t+rQ+dt/qDsQvuiqLo06VPPzn50lgUP2fnp/q3PfLlGdc9N+3qAW2PGdX/prqTqawun7D4gUQsrV/rQ6MoiseSvVrtt3b9sqkrXuqWv8e5uzxXkNn5lZnXfbLkyZ06nPrtXZ6v+5J5QxWVZVEUDWl/fE5am/fm3Vrvs9/c8T97drlg5sq3X5z+87RE5qlD7h3U7tiZK9+Koqhz3i5RFHUv2LOsck11VNW1YHgURZ3zdq2OqmYVja6sKoui6LA+1y5YM/69ebe1a7HDiYNu2/hMamUk876321t9Wx8yZv7tb87+U+f8YRfs9mZ+RudxC++t2TR/Y/Yf3p17yyszr1+wZnwURa/OvH70nJs39NhrvjQFmV136Xj6e/NvXVe+vGZuB/X86adLn16wZnzX/N3P3fnZzGTe+wvuapPdZ1T/P2/OJGlm/IltTqoPP2TwqlUlo9+bVnd09txlCxcXHXv0zpkZabk5mYceNHjSp/PXV1T27V04fdbSKIrmzl/RpnVOt66tp89cGkXR9JlL+vUtrLuGWXOWL1225qjDdsxpkdGrR9tzTh+Rl5dV86nddunRvl1eenpy9HtT99q9T5fOreLx2OABnfv0bj9m7Iwoik75xu7fPnPfFi0ysjLTdtmp+5y5K6IvmjFz6ZKlq0ceuVN6eiKnRcYRhw4ZO25WRWVV3WV237XXRxPnlpdXRlE08eN5HQrzO3YoeP+Dme3b5e01vE8yEe/UseXw3XqNnzBn409Q757t+vYuzMr8wuv0ja6ndauclgUtZs5eFkXR1OmL996j77QZS6IoWrR41fr1Fd27tYmiqKKy6uD9B0RRlJ6e6N6tzeIlqzbni/TOe9N2H9azZ4+2iUR8px27duva5qOP525o4Q197aIoKi1df/jBgwvys2teKS9sl9+zR9soinp0a1Natn7vPfvWfFxdXb18RfHmTGwjdt6xWzIZr6qqLiutaJGdEY/HWhZk/+jiw/fdu9/Gb7jxb4+Kyqr3xk4//OAh+XlZacnEEYcOWb2mpOZ5jtsDACmVn9EpHksWly9ZU/aFYzVXlc2r+aC6uiqKormrxt7/8Rnvzbtl146np8Wz35r9l0+WPvHs1J+sKVs4vPO3oyhaVTrv1g8OvXPcsR8t+s+7826Joqhnq/2KSufMKXo3iqJFxRMnLH6oV6v92rXo/+nSZ8YuuOP9+bd/svTJgW1H5qS3q3u/Hyy4O4qiAW2PiqKoW/4eGYnciYsfqqqu3L/nFbEo/uinF7468/qHPjlv+srXCnMG92590EYeWnVUFUVRPJa85YNDnp16Zd1Pdc7btW/rQxYVT7xnwsmvz/r9Ax+fG0XRiG6XLCqeWFqxqlPezlEUdW+596yVby8q/rh7wZ5RFHXO22XhmomlFatqnpBpK157deZvnp7yo+Ul0wsyu+ZndtmcZ3v3TufmpLd7d94tT0+5/MXpP39t5u/S4lnDu3xn7ur3V5TMjKJo6vKXZha9OWX580Wlc6Momrz8+ekrX9vQY695gDnp7e6ZcMozU368vGR6zdymLH9x9NybX55xXRRFWWkFj3xy/tNTflRSsbIwZ3AilsojTkkJhwA1K+npyeNG7nL/g+/tOLhr7eCy5cW5OZktWmTU/LewXV51dVRUtK5fn8L7H3pvfUXltOmLe/Vsl5+XPWPmkiGDOs+YufSAffvXXe2yZWtaZGdkfr7dPGCHjlEU1WyGtmmTWzO4dHnxlGmLn3/549pb5eZkRlFUtGrdE0+Pnz13WVV1dWVF1Rf2TXx+w6qq6h9eeX/dwVWr1tU9aL5/vw6ZGckJH8/ddefu4yfO2W2XHlEULVtRXFiYX7tMYbu8muTYiDatcxsObmg9fXu3nzFr6Q59C2fNXnbWt/Z+/qWJpaXrp89c0qtHu5oXp9PSEllZ6TW3SksmytdXbvze/3t3y4t3HPy/PwmF7fJWrFi7kYUb/dpFUZRIxAvys2uXzM/778dpaYlEIl4TOfF4LBaLra/4Qk2NGTvj3//5797eG351Ynr65v4SiMdjxxy507/uffvFVycN6Ndx92E927Zp5Pmsa+PfHqtWlVRUVN10y8t1b7J8RXGfXu2TiXgymYiAFKk5eicW20SHzyl6p+aDNi36RlF0dL/fH93v9zUj2emtoygqqVi5Y+FJfVsfnJ3WKh5LRlGUkah/QlSb7L5RFA1qN2rQAf97GaV1Vq/i8iW1/523+oMlaz/t2+bQeCzRt83BURSNW3h/FEWFLQZEUTR31diaxRasHt+r5X5ts/suWztl4zOfv/rDquqKeoOFOQOjKJq7+vO1rRkXRVHbFv2qo+rZRe/0bLVPPJboVrDHW7NvzM/s1K1gjxZpbQsyu05a8kTtGhau+e+ZeEWlc1tn9cpM5keb4b/3u+r9eve7iVtt4LFPX/FKFEXllcWLi79w5YklaydHUbS6bEEURUvXTq75Eq8pW5yVbJmRzK17zBUhEADNzU5Duo5+d9oTT4+reQ14Q9ZXVLZtk9uyIHvO3BXTZizZa3ifvNzMBx6duWx5cVl5RdfOrb+wdCyqd1hRrUT8v/s309MSx4/cdb8RX/iFVVVV/dd/vjKwf6erTzsmMyNtwsfz7r5/dL01pKclsrLSf3vtCRuZbTweG7Zzj7HjZg4c0GnKtEX1juGp+6AaGa0z8URis/bG1qynb+/Cd9+fMW/+ytatczIz0rp1bT1j1tLpM5b2+/xUhNhmrWxz7+7LLl//scQa/bARgwd2vuLSI2o+rnug1+bYb0S/XYZ2+/iT+RMmzf3V75465/QRgwd23sjyG//2WLOmNIqiKy49slOHgvo3tAcAUmpV6dyKqrIWaW3yMzrXvuofRdGgdqOmLn+5rHJNzX/Lq9bVfFBRWRJF0QvTr5m24pXahWNR7LDev9yt0znvzP3bO/P+3qfVQbV5UFdFVUkURZOWPP767P99dunayfUW+2DB3Yf3ua5HwYg+rQ9eUTLzi4et//cXfU2xVNf+3v/813QynlFvbeWVG3zlJfrf37tY9Pm+jplFb/Vrc9jAdqNapLWZWfR2QWaXYZ3O7tFyryiK6h7oX1m9/vN1VNU8A/XWnYxnVldX1R5VVbNY44/iC5/aiMYfe8MHWFW9vna1lZ/HT83ugk393aAZ8ie2GTrxuGHvfzhzztzlNf9t2zp3TXFp8ecHgi9asjoWi7VumRNFUd/ehdNmLJ4xc2nPHm07d2q1ZMnqTycv6NOrfTz+hd8FbVvnrl1XVlz83zWMmzBn8pRF9e60TevcBQtX1v535cq11dXVK4vWrSxat9+IHWrOjp01Z1nD2bZpk1tSUr6y6L9/RcrLK2rvqK7dh/WaPGXRmLEzenZvl5+XVTOrhQv/93LRoiWra16QTkuLr//8xfjSsvXr6lwatVEbWk/fPoWz5iybPG1Rrx7toijq0b3tjJlLp81c0q9P4QbXVcfKlWv/8veXai6pGUXRunVlublZURS1bZO7cFEjd7ehuW3oa/eVZWWldywsqPkX+zIRU10drVlTmpubucfuvb5z9n5779Hnnfemb+ZtG/32yM3NzMhILljwv/Hln+8M6dG9zaEHfelzl4EtpbJ6/adLn4qi6Oh+v6/det6zywWnDbn/jJ0eabj8snXToyhKxNLmrhozd9WYjETu+sqS6qi6S/5uURSNXXDn0rWT8zM71btVLJaovW12equa29a8ML++cl29hcctvLequnJYp7M65g79aNEDNYOLiidFnx+dH0VRl7xdoyhaXDyptGJ1FEX5GR1rxjvn7bw5j3pR8cdRFHX6fG1d83eLomjx2klRFNWcBrB31+9XVJXNWzV2dtE7iVj67p3Pq46qZ618e3NWHkXRsf1v+sUBK3fvfG4URW2ye0dRVHNIT839ds7b9fNHMazmUdR7ohrMtvHHvpmTIXACoBlq2yb3wH0H1F64vWuX1h0LC554elx5eeWq1SXPvjBhpyFdMzKSURT17V04ZuzMgvzs7Kz0eDzWqWPLN96e0nADt1vXNu3b5T/65AerVpdMn7n03gferayq/8rEiD37jv1w1iefLaiqqp4+Y8mvf//09BlL83Izk8n49JlLKiurPpo4d/qMJeXlFTVn1qalJZavKC4pKe/SqVXXLq0feuz9tWvLSkrX/+eR92+/u5HLJnQozO/QoeCp5z4atkuPmpFhu/RYsmz1O+9Nr6qqnjNvxTvvTRs+rFcURW3b5M2Zt6K8vCKKopde/SS5qetXbmg9+XlZBfnZ77w3vXfPdlEU9eze9qOP55aXV3Tq0HJzvgr5+dlLl6158NH3Fywqev7lj0vL1vfr3T6Koj137z1m7IzZc5ZXVlaN/XDWnLnLax5R7RNSd1/LRr52W1taWmL16pK1a8sqPj+CaPGSVf933WOfTVlYVVW9prh0wcKi1q03N0Ua/faIomjvPfo+++LExUtWV1ZWvTl6yvV/eLrm26OoaN2y5Wu20kMDNsczU68sLl88sN3IH+899Zydn7lkjw+P7veHsorVT02+rOHCHy36T0VV2Yhul+zb/dKRO9x4zs5P15wDULOBO7zzd/bqemGf1gdFUdQlf7dOuTuVVKyMomhQu2P37PK92UWjl66b0qNgxDH9/rBf98vP2+XF4/v/raq6/q7RNeWLpq54acfCk2JRbPyi/77LzSszf1MdVY3c4cYRXS/+xoBbuhXsOXvVOzNWvl5SsXJ5yfSc9PbH9PvjPt1+2K/N4ZvzkOet/mDK8uc75u544sDbR3S9+PgBf4+i6NUZ10dRNH/1B+urSrrm7z5v9fuV1eVFpXNWl83v3eqApWs/W7u+kde2GjVl+YuxKHZ4n1+ftdPjxw34WxRFNSXz3rxbi8sXD+9y3iG9rjm4189GdLuktGLVO3P/FkVRyfqVURTt3fXCQe1G1Vvbhh77Zk6GwAmA5unQgwbVHt0Ri0VnfWvEyqJ1P732kRtufK5Tx5a1h9D07dN+ydLVNSePRlHUs0fbRYtXNQyAWCy64Nz9Vxatu+a6x/5179tHHbZjzWkAdQ3s3/GYI3e6/+Exl151/30PvfeNUbv27tUuLS1x0vG7PfXcR1f830PjJ8759ln7FrbLv+bXj1dUVu22S8/JUxddc93jlVVVZ39r74qKqp/96tFrrntsfXnFmd/cu9EHtfuuPSsrqoYO+e8B9Pl5Weecvs8boyf/6KcP3Pnvtw49aPBew/vULNapQ8EvfvPE9X94plXLFq1b5VRWNn780sbXE0VRvz6Ftc9Pty5tlixd3bd3+8180Twej5139n6rVq274cbnxn4465zT92nZskUURTsO7nLwAQPvvOetH//swVff+PSCbx/QsbAgiqK6T0jdZ35DX7utbeAOHZPJxNXXPjr78/02he3zTzp+twceef/SK++/7oanWrfKOfKwIZu7tsa+PaIoOvLQIf36FP7hpud//LMHx46bdcF5B9ScavLZ1EUvvvLJVnpowOYoKp3zl/f2GDP/1sqqsh4t985M5k1Y/NDN749YsKaRN5xZXjL9nx8csrB4wgE9ruzf9si35vzlycmXRVH0/LSr560eu1OHUwe1O/bfH5300aL/tM8ZMLj98ZOXvTCr6O2WWV336HJ+dVR16weHfbzk0SGFJ47odsnU5S/dMW7k54emfMG4BfdEUbRgzUdL1v73mm9zVr172wdHFJcvPbTPtf3bHvX+/NvvGDey5lMPTvr2krWf7drpzB4tR9Sc7JuIb/pU139/dMq78/7er82hh/a5trRi9Z3jRk5d8VIURZXV6+euGhNF0ayi/x7IOqvonSiKZq5s5BWrDZm05PEnJ/9wddmCni33W7t+2VNTLqspmbLKNX8ds8+0Fa/u1fWiEd0umVX09s1j9q7pijHzb19RMqNny/0aNsxGHjtsUmxW0Zc7/pitqrq6uqqqqrKysk/bzFTPpcl55IkP1q0r/+bJe6R6IgDbnytf2u7/rBzc62cH9LjqycmXjp57c6rnErRfH1S6+QtPXVqaSCTi8fiXOuiUrc1JwGwHKiurJk9dNPq9aZd9/7BUzwWAba1v60N3aHPobp3PLS5fPHbBnameDmz3BADbgT/e/MLKlWtPOn63wvabdUk1AJqTznm77Nb53GXrpj3yyQUbu4APsHkcAtS0OAQIgK2hGRwCRBPhEKBmwEnAAAAQEAEAAAABEQAAABAQAQAAAAERAAAAEBABAAAAAREAAND8ZSTzUj0FmgPfSM2DAACA5q9f60NTPQWaA99IzYN3AgaA5u+ofr9LxNOmLn+puHxJqufCdiknvV2f1gcd3ue6VE+ELcA7ATct3gkYAGg2vBNw0+QQIAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACIAmx3tlAwDNhg2bJiiZ6gnQiFgsNnnR2oqKisrKisrKyqqqqiiKqqur//vZlM4NAKCh6s+39ePxeCKRSCSSyWQykbSp2RT5qjQtsVisuro6FovFYrF4PF5VFU8kpDMAsN2Ix+OxWDwej9dsz0R2AjQ9AqDJidVu/ldXJ5PJqqqqeLy69uX/KIr8EAEATU3NpkrtVkw8Ho/VaQCaFAHQFNX85NR+UHfrP4ocAwQAND2fb63E6kSArf+mSQA0ObXHz8ViseqaF/+/GAB+kgCApqZ2YyXWQCqnRWMEQFNUe8Bc7aZ//Z0AAABNT+3mvqP/mzIB0ETVawA/PwDA9sJ2SxMnAJo6P0IAAGxB3ggMAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIAIAAAACIgAAACAgAgAAAAIiAAAAICACAAAAAiIAAAAgIP8PoZbJOQNXxRMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thoughts:\n",
+ "- The current screenshot shows a confirmation page indicating that the form submission has been successfully received.\n",
+ "- The objective to fill out the form without providing a cover letter has been achieved.\n",
+ "- No further actions are required.\n",
+ "\n",
+ "Next engine: STOP\n",
+ "Instruction: STOP\n",
+ "Objective reached. Stopping...\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from lavague.drivers.selenium import SeleniumDriver\n",
+ "from lavague.core import ActionEngine, PythonEngine, WorldModel\n",
+ "from lavague.core.agents import WebAgent\n",
+ "\n",
+ "selenium_driver = SeleniumDriver()\n",
+ "action_engine = ActionEngine(selenium_driver, embedding=embedding)\n",
+ "python_engine = PythonEngine(embedding=embedding)\n",
+ "world_model = WorldModel()\n",
+ "\n",
+ "agent = WebAgent(world_model, action_engine, python_engine)\n",
+ "\n",
+ "url = \"https://form.jotform.com/241472287797370\"\n",
+ "objective = \"Fill out this form. Do not provide a cover letter\"\n",
+ "\n",
+ "agent.get(url)\n",
+ "agent.run(objective, user_data=user_data, display=True)"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "0324bacbc8a443e2b8f87b7ed4f7cd6c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "08857a7b098d4be9ba288f5eaca13aaf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_91b05e3424aa4a42be3335395d443a9d",
+ "placeholder": "",
+ "style": "IPY_MODEL_a91df417c3bc4c1b95032a242b9f3a56",
+ "value": " 711k/711k [00:00<00:00, 35.8MB/s]"
+ }
+ },
+ "0c60920cf1ba442e9460bce27484d11f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0d93652035a148e1996af6e74dc4caba": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1104ab3feec743c4b7fd765965edc2e4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_50121181ae22418ca23ba782f31fd88c",
+ "placeholder": "",
+ "style": "IPY_MODEL_c9058ed83f5b42d3a196462b95e6cc92",
+ "value": " 743/743 [00:00<00:00, 63.4kB/s]"
+ }
+ },
+ "11f3879ec38b4cb098c7d6498f124ae6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_79f378fcc97f4d98bd8344760f2697ee",
+ "max": 124,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f56cf3fbda9d47ba89002d704ae76a0e",
+ "value": 124
+ }
+ },
+ "125b2cfe4e914f89abf53e7d2669fa82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "12b3e03f3ce44957a383afc4da7cee5b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "14efeeb1e3d840f19122aad78a612c43": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "158f97a3e94e49479ed8aa64c4de7e5e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "174b1d52a77345adb33d5e5ae7cb8296": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1b841a64214c415887b6f28cc0b2683b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1c5cf4088c734078932d7900c0ccbb9e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1e463694d5314475a6291c6824bbbdfc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1f40369589de4b799c5bc768cd162663": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1f8950dd4f18421687f5805eac0de732": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_dab379fa9d6047e7922dbf38a5bd1e8a",
+ "max": 743,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_12b3e03f3ce44957a383afc4da7cee5b",
+ "value": 743
+ }
+ },
+ "2fcdb4438cb0468e9752d4d134bec7d9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3037ed34510d43fe97a05b932c2d7437": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "326e36b5be1a48d09fe827883faf134e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fb7e30045c3242d38eaa45c243a37cd9",
+ "placeholder": "",
+ "style": "IPY_MODEL_f83b40f450c844f19224759f3df1d17a",
+ "value": "modules.json: 100%"
+ }
+ },
+ "36604a7ea34b4091847151dc40cbe7a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a46ffc9e6adc4033ba9597815e4a86c0",
+ "placeholder": "",
+ "style": "IPY_MODEL_5a8d202159f74896a4751329bd48916e",
+ "value": "vocab.txt: 100%"
+ }
+ },
+ "37aaffa990dc4a639909c4458bb53e41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "383c470a746d4bfcb27957efe3b5e1d9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a81f205a336e404e8cefc4f3e9a527af",
+ "placeholder": "",
+ "style": "IPY_MODEL_d7af56908ad6413b9d0cbdd800639314",
+ "value": "1_Pooling/config.json: 100%"
+ }
+ },
+ "40076e71fa0d46e2ad038324d63f88b8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "42a20877a3c94f2a955fdf513916ced9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_81149453080e46d28df04be03afb771e",
+ "placeholder": "",
+ "style": "IPY_MODEL_1b841a64214c415887b6f28cc0b2683b",
+ "value": "config.json: 100%"
+ }
+ },
+ "42af719f6e3247efb9811f8105b0525c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_59ad09abdf80426192e02b3e6a7c3bdc",
+ "max": 133466304,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_61a476c7300743c9ac6ab71dfaf248cb",
+ "value": 133466304
+ }
+ },
+ "450c6bb7c7184b8e8342dc3999f4ec7f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4834b04d46a64d57af17a91c3518dc40": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "48cdca310f174bc18d9cce37d0266d5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_96f8b07e6c3c4917a632ad1b81c6eeb9",
+ "placeholder": "",
+ "style": "IPY_MODEL_81ee7d0725294a8c8ab6a4d3f57b8adf",
+ "value": " 52.0/52.0 [00:00<00:00, 4.57kB/s]"
+ }
+ },
+ "4fb73d95c1164ca2a9519c6a27e7957d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_65ade782d2584dd29c3f879232828aad",
+ "max": 94783,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d86ae6008e084a63b053ec77d7c2b96c",
+ "value": 94783
+ }
+ },
+ "50121181ae22418ca23ba782f31fd88c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "583f7e9337494e9cabb77b17acf45d47": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cd3614ffc4764104af2d6f305f9828b2",
+ "max": 366,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_eae21f68c08b459f9f938c2ded7d4a55",
+ "value": 366
+ }
+ },
+ "58efc67986c64507a7cc1e9fd0e8387b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "59030126571349478d8240c6249996e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5a9d68f0842542b6aff65a1d62b6627b",
+ "placeholder": "",
+ "style": "IPY_MODEL_125b2cfe4e914f89abf53e7d2669fa82",
+ "value": " 366/366 [00:00<00:00, 24.1kB/s]"
+ }
+ },
+ "59039af645e34c1caf9966a2bf86e33f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a1cbf252b0824ffd8df6d7ba80d7e1c2",
+ "placeholder": "",
+ "style": "IPY_MODEL_ddf18076880e4719a9c214882edbbf45",
+ "value": " 125/125 [00:00<00:00, 10.7kB/s]"
+ }
+ },
+ "59ad09abdf80426192e02b3e6a7c3bdc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "59d556a2ddc94820bb7f572289087103": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5a8d202159f74896a4751329bd48916e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5a9d68f0842542b6aff65a1d62b6627b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5d226287ccf74b4c826ee26078051602": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5d361c537ea248459e8658724b9ec7ac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_db676d96ab7c456ab6e2ad0e46cca895",
+ "placeholder": "",
+ "style": "IPY_MODEL_d1bac09f17ee45718a300ee88ae26f64",
+ "value": " 232k/232k [00:00<00:00, 17.0MB/s]"
+ }
+ },
+ "5de44caa2507475b9dac7e2161e5f7a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ee03258e71e14ad5aac769dbd4517f33",
+ "placeholder": "",
+ "style": "IPY_MODEL_37aaffa990dc4a639909c4458bb53e41",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "5e5c14b4bf6e4d14b102758a5ddc2aed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fc14ab6e26484ff5904ab58d7793664d",
+ "max": 711396,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_bbb8f799c8724960be1e0f6868de7740",
+ "value": 711396
+ }
+ },
+ "5f47df4d42d3478f907db02257b0d7f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_326e36b5be1a48d09fe827883faf134e",
+ "IPY_MODEL_a8399b00df9c4e019c7ff4ba7f6aaa7d",
+ "IPY_MODEL_c901d0374d284cc99ed5346b5331dab7"
+ ],
+ "layout": "IPY_MODEL_c866bcdc79f2463b806c196ec21f1eb2"
+ }
+ },
+ "61a476c7300743c9ac6ab71dfaf248cb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "62c7e8d8539843bf92cfaa70b4d9c797": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "633e047d64904d8785129c1541288937": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "63b90103559b45238098da1094dfc155": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "65ade782d2584dd29c3f879232828aad": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "65db877a12c248daa3c54df54c1f9fbc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6713314c12fc4e81b1e0ffb462a34c4c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_450c6bb7c7184b8e8342dc3999f4ec7f",
+ "placeholder": "",
+ "style": "IPY_MODEL_aad75fc5e6064fdcacb6e7e38ed095ea",
+ "value": " 124/124 [00:00<00:00, 11.4kB/s]"
+ }
+ },
+ "677a81525ec14a999f5c7f26def5f30e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_40076e71fa0d46e2ad038324d63f88b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_5d226287ccf74b4c826ee26078051602",
+ "value": "config_sentence_transformers.json: 100%"
+ }
+ },
+ "6ac9f946fe194f7bb222fcfca8e5ca84": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_87065cd3812e4cbc94397e3629f3642c",
+ "IPY_MODEL_583f7e9337494e9cabb77b17acf45d47",
+ "IPY_MODEL_59030126571349478d8240c6249996e7"
+ ],
+ "layout": "IPY_MODEL_b8ccf73efa7c455b81a6cbd34ff34653"
+ }
+ },
+ "6d54f045d9c74453aceb66d3200c4271": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6f01b2d2620c428884fe440160dd878b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "71936fa193df4f92b9678316cb7d75db": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_63b90103559b45238098da1094dfc155",
+ "placeholder": "",
+ "style": "IPY_MODEL_c7544d5cacec4375b81e3e5108ed7a70",
+ "value": " 190/190 [00:00<00:00, 17.0kB/s]"
+ }
+ },
+ "750b9eb4e0ca48aab05ec1e88bc1a46b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0d93652035a148e1996af6e74dc4caba",
+ "placeholder": "",
+ "style": "IPY_MODEL_158f97a3e94e49479ed8aa64c4de7e5e",
+ "value": " 94.8k/94.8k [00:00<00:00, 7.14MB/s]"
+ }
+ },
+ "763d29304b0a40ce8738d3c69f01997c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6d54f045d9c74453aceb66d3200c4271",
+ "placeholder": "",
+ "style": "IPY_MODEL_ad02fb18811f4b81b5cd1b2294277427",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "774215b009e94541a26752d2c1e618ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_383c470a746d4bfcb27957efe3b5e1d9",
+ "IPY_MODEL_8f07215032f74effb3337733ba0906e7",
+ "IPY_MODEL_71936fa193df4f92b9678316cb7d75db"
+ ],
+ "layout": "IPY_MODEL_a62a894faa194e10a9bfc892f65752f2"
+ }
+ },
+ "79f378fcc97f4d98bd8344760f2697ee": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7c823e934f2f48beb29a1515d9a17889": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_baf0f995d4104a4481c919a8d0106b4c",
+ "max": 125,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ee8e9ac5d1364c68973fb833a7115809",
+ "value": 125
+ }
+ },
+ "81149453080e46d28df04be03afb771e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "81ee7d0725294a8c8ab6a4d3f57b8adf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "87065cd3812e4cbc94397e3629f3642c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6f01b2d2620c428884fe440160dd878b",
+ "placeholder": "",
+ "style": "IPY_MODEL_ca58204a1fdc4b738ea58fb652516f17",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "880f6f4f4cfb483895ff8d514df859ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d01b32ad4b2646b6803fae549d04ffe5",
+ "IPY_MODEL_7c823e934f2f48beb29a1515d9a17889",
+ "IPY_MODEL_59039af645e34c1caf9966a2bf86e33f"
+ ],
+ "layout": "IPY_MODEL_0324bacbc8a443e2b8f87b7ed4f7cd6c"
+ }
+ },
+ "8ce4addf67a242b28166545e2372ea73": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_42a20877a3c94f2a955fdf513916ced9",
+ "IPY_MODEL_1f8950dd4f18421687f5805eac0de732",
+ "IPY_MODEL_1104ab3feec743c4b7fd765965edc2e4"
+ ],
+ "layout": "IPY_MODEL_4834b04d46a64d57af17a91c3518dc40"
+ }
+ },
+ "8ddd45034b134f39bd442e8059dfa503": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8f07215032f74effb3337733ba0906e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2fcdb4438cb0468e9752d4d134bec7d9",
+ "max": 190,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e2dbb9d991a34f2ca3ede807dd2e1405",
+ "value": 190
+ }
+ },
+ "91b05e3424aa4a42be3335395d443a9d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "921db248e4dc4f5a93014ac421c3aed0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "96f8b07e6c3c4917a632ad1b81c6eeb9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a13cd161407b44bfaedc7ed600c71e73": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_aad528c411b4424a9acb7d6280a694bd",
+ "IPY_MODEL_a30f33178a774af1af6d608a8c365f6c",
+ "IPY_MODEL_48cdca310f174bc18d9cce37d0266d5c"
+ ],
+ "layout": "IPY_MODEL_3037ed34510d43fe97a05b932c2d7437"
+ }
+ },
+ "a1c6348f85e94fa8992d07e3a52ea740": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_921db248e4dc4f5a93014ac421c3aed0",
+ "max": 231508,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1f40369589de4b799c5bc768cd162663",
+ "value": 231508
+ }
+ },
+ "a1cbf252b0824ffd8df6d7ba80d7e1c2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a30f33178a774af1af6d608a8c365f6c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1c5cf4088c734078932d7900c0ccbb9e",
+ "max": 52,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ff418b407704482ca2aeb14b9a98f8f3",
+ "value": 52
+ }
+ },
+ "a46ffc9e6adc4033ba9597815e4a86c0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a62a894faa194e10a9bfc892f65752f2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a81f205a336e404e8cefc4f3e9a527af": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a8399b00df9c4e019c7ff4ba7f6aaa7d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ff9e0c35e6c54d5cb8f4f287265c9492",
+ "max": 349,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_62c7e8d8539843bf92cfaa70b4d9c797",
+ "value": 349
+ }
+ },
+ "a91df417c3bc4c1b95032a242b9f3a56": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "aad528c411b4424a9acb7d6280a694bd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_174b1d52a77345adb33d5e5ae7cb8296",
+ "placeholder": "",
+ "style": "IPY_MODEL_58efc67986c64507a7cc1e9fd0e8387b",
+ "value": "sentence_bert_config.json: 100%"
+ }
+ },
+ "aad75fc5e6064fdcacb6e7e38ed095ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ad02fb18811f4b81b5cd1b2294277427": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b1acb64248b541b88c764543b1dcb895": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b8ccf73efa7c455b81a6cbd34ff34653": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "baf0f995d4104a4481c919a8d0106b4c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bbb8f799c8724960be1e0f6868de7740": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bdec1daa3eb24e268327d6c7fc2ce9a5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d8ab4d895553470ca9702aba5e28821f",
+ "placeholder": "",
+ "style": "IPY_MODEL_cfcfcdc86f1f4b20bd5b6c0aa5eadfd1",
+ "value": "README.md: 100%"
+ }
+ },
+ "bf6442f0263c47a78d488b1213e5108a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_763d29304b0a40ce8738d3c69f01997c",
+ "IPY_MODEL_42af719f6e3247efb9811f8105b0525c",
+ "IPY_MODEL_f03861fb24d44568bf43dba16b454614"
+ ],
+ "layout": "IPY_MODEL_0c60920cf1ba442e9460bce27484d11f"
+ }
+ },
+ "c444965db06b4e5b94bfe3f71e983e2f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_bdec1daa3eb24e268327d6c7fc2ce9a5",
+ "IPY_MODEL_4fb73d95c1164ca2a9519c6a27e7957d",
+ "IPY_MODEL_750b9eb4e0ca48aab05ec1e88bc1a46b"
+ ],
+ "layout": "IPY_MODEL_59d556a2ddc94820bb7f572289087103"
+ }
+ },
+ "c7544d5cacec4375b81e3e5108ed7a70": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c866bcdc79f2463b806c196ec21f1eb2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c901d0374d284cc99ed5346b5331dab7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e1ce3f7fc11c4c4ebe93028a57ba5008",
+ "placeholder": "",
+ "style": "IPY_MODEL_8ddd45034b134f39bd442e8059dfa503",
+ "value": " 349/349 [00:00<00:00, 31.8kB/s]"
+ }
+ },
+ "c9058ed83f5b42d3a196462b95e6cc92": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ca58204a1fdc4b738ea58fb652516f17": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cc9474e4b466448f9c41d033d70cb686": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_677a81525ec14a999f5c7f26def5f30e",
+ "IPY_MODEL_11f3879ec38b4cb098c7d6498f124ae6",
+ "IPY_MODEL_6713314c12fc4e81b1e0ffb462a34c4c"
+ ],
+ "layout": "IPY_MODEL_65db877a12c248daa3c54df54c1f9fbc"
+ }
+ },
+ "cd3614ffc4764104af2d6f305f9828b2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cfcfcdc86f1f4b20bd5b6c0aa5eadfd1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d01b32ad4b2646b6803fae549d04ffe5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e675e055ef6d4e0ba1580d57b33e7cd5",
+ "placeholder": "",
+ "style": "IPY_MODEL_1e463694d5314475a6291c6824bbbdfc",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "d137a6f3a13e40339e7c1dae13d8e4f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_36604a7ea34b4091847151dc40cbe7a4",
+ "IPY_MODEL_a1c6348f85e94fa8992d07e3a52ea740",
+ "IPY_MODEL_5d361c537ea248459e8658724b9ec7ac"
+ ],
+ "layout": "IPY_MODEL_f93b223315c046d38bed527a5ba6b869"
+ }
+ },
+ "d1bac09f17ee45718a300ee88ae26f64": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d7af56908ad6413b9d0cbdd800639314": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d86ae6008e084a63b053ec77d7c2b96c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d8ab4d895553470ca9702aba5e28821f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dab379fa9d6047e7922dbf38a5bd1e8a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "db676d96ab7c456ab6e2ad0e46cca895": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ddf18076880e4719a9c214882edbbf45": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e1ce3f7fc11c4c4ebe93028a57ba5008": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e2dbb9d991a34f2ca3ede807dd2e1405": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e675e055ef6d4e0ba1580d57b33e7cd5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eae21f68c08b459f9f938c2ded7d4a55": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ee03258e71e14ad5aac769dbd4517f33": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ee8e9ac5d1364c68973fb833a7115809": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f03861fb24d44568bf43dba16b454614": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_633e047d64904d8785129c1541288937",
+ "placeholder": "",
+ "style": "IPY_MODEL_b1acb64248b541b88c764543b1dcb895",
+ "value": " 133M/133M [00:00<00:00, 278MB/s]"
+ }
+ },
+ "f56cf3fbda9d47ba89002d704ae76a0e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f83b40f450c844f19224759f3df1d17a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f93b223315c046d38bed527a5ba6b869": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fb7e30045c3242d38eaa45c243a37cd9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fc14ab6e26484ff5904ab58d7793664d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fc5fd8b70c1343a28d758bc83f067520": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5de44caa2507475b9dac7e2161e5f7a3",
+ "IPY_MODEL_5e5c14b4bf6e4d14b102758a5ddc2aed",
+ "IPY_MODEL_08857a7b098d4be9ba288f5eaca13aaf"
+ ],
+ "layout": "IPY_MODEL_14efeeb1e3d840f19122aad78a612c43"
+ }
+ },
+ "ff418b407704482ca2aeb14b9a98f8f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ff9e0c35e6c54d5cb8f4f287265c9492": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file