generated from amosproj/amos202Xss0Y-projname
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgraph_handler.py
433 lines (351 loc) · 13.1 KB
/
graph_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import json
import logging
import re
import time
import pandas as pd
from graph_creator import llama3
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def build_flattened_dataframe(entities_and_relations):
"""
Flatten list of lists by adding chunk_id attribute convert to pandas dataframe
Parameters
----------
entities_and_relations : list
List of Lists of dictionaries
Returns
-------
pandas.dataframe
A table of the flattened data
"""
# flatten the list by adding attribute chunk_id
flattened_data = []
for j in range(len(entities_and_relations)):
id = j
for i in range(len(entities_and_relations[j])):
entities_and_relations[j][i]["chunk_id"] = str(id)
flattened_data.append(entities_and_relations[j][i])
# convert data to dataframe
df_e_and_r = pd.DataFrame(flattened_data)
return df_e_and_r
def connect_with_chunk_proximity(entity_and_relation_df):
"""
Create connections by connecting entities that are from the same text chunk
Parameters
----------
entity_and_relation_df : pandas.dataframe
Table of nodes and relations between the nodes
Returns
-------
pandas.dataframe
A table with given relations and chunk proximity relations between the nodes
"""
# separate all nodes by chunk_id
df_by_chunk_id = pd.melt(
entity_and_relation_df,
id_vars=["chunk_id"],
value_vars=["node_1", "node_2"],
value_name="node",
)
df_by_chunk_id.drop(columns=["variable"], inplace=True)
# connect all nodes within a chunk to each other
df_merge = pd.merge(df_by_chunk_id, df_by_chunk_id, on="chunk_id")
# we don't want self-loops
df_merge = df_merge.drop(df_merge[df_merge["node_x"] == df_merge["node_y"]].index)
# aggregate connections
df_result = (
df_merge.groupby(by=["node_x", "node_y"]).size().reset_index(name="count")
)
# lower number of connections
df_result = df_result.drop(df_result[df_result["count"] == 1].index)
# adapt naming and add edge name
df_result = df_result.rename(columns={"node_x": "node_1", "node_y": "node_2"})
df_result.drop(columns=["count"], inplace=True)
df_result["edge"] = "text proximity"
return df_result
def extract_entity_set(entity_and_relation_df):
"""
Extract a set of all entities from the table of entities and relations
Parameters
----------
entity_and_relation_df : pandas.dataframe
Table of nodes and relations between the nodes
Returns
-------
list
A set of all entities as a list
"""
nodes = entity_and_relation_df["node_1"].tolist()
nodes += entity_and_relation_df["node_2"].tolist()
return list(set(nodes))
def index_entity_relation_table(entity_and_relation_df, entities):
"""
Translate relation table with entity index to better process relations
Parameters
----------
entity_and_relation_df : pandas.dataframe
Table of nodes and relations between the nodes
entities : list
Set of entities (every entity just exists once)
Returns
-------
dict, list
A dictionary to translate entities to an index number
A List containing all relations as tuples of entity indexes
"""
entities_dict = {}
# for reproducible results
entities = sorted(entities)
for i in range(len(entities)):
entities_dict[entities[i]] = i
relations = []
for i, row in entity_and_relation_df.iterrows():
relations.append([entities_dict[row["node_1"]], entities_dict[row["node_2"]]])
return entities_dict, relations
def extract_components(relations_list):
"""
Extract components of the graph created by the entities and relations
Parameters
----------
relations_list : list
A List containing all relations as tuples of entity indexes
Returns
-------
list
A list of lists, which each contain the entities of a component
"""
components = [[]]
for relation in relations_list:
node_1 = relation[0]
node_2 = relation[1]
inserte = {"at": -1, "new_node": -1}
merge_with = -1
for i in range(len(components)):
if i >= len(components):
break
if len(components[i]) == 0 and inserte["at"] == -1:
components[i].append(node_1)
components[i].append(node_2)
components.append([])
break
for j in range(len(components[i])):
if node_1 == components[i][j]:
if inserte["at"] == -1:
inserte["new_node"] = node_2
inserte["at"] = i
else:
merge_with = i
break
if node_2 == components[i][j]:
if inserte["at"] == -1:
inserte["new_node"] = node_1
inserte["at"] = i
else:
merge_with = i
break
if merge_with >= 0:
components[inserte["at"]] += components[merge_with]
components.pop(merge_with)
elif inserte["at"] >= 0:
components[inserte["at"]].append(inserte["new_node"])
# remove empty components
components.pop(len(components) - 1)
return components
def get_entities_by_chunk(entity_and_relation_df, entities_dict):
"""
Get for each chunk all entities that were extracted from a chunk
Parameters
----------
entity_and_relation_df : pandas.dataframe
Table of nodes and relations between the nodes
entities_dict : dict
A dictionary to translate entities to an index number
Returns
-------
dict
A dictionary containing all entities per chunk as ids
"""
entities_by_chunk = {}
for i, row in entity_and_relation_df.iterrows():
if row["chunk_id"] in entities_by_chunk:
entities_by_chunk[row["chunk_id"]].append(entities_dict[row["node_1"]])
entities_by_chunk[row["chunk_id"]].append(entities_dict[row["node_2"]])
else:
entities_by_chunk[row["chunk_id"]] = []
entities_by_chunk[row["chunk_id"]].append(entities_dict[row["node_1"]])
entities_by_chunk[row["chunk_id"]].append(entities_dict[row["node_2"]])
return entities_by_chunk
def get_shared_chunks_by_component(component1, component2, entity_chunks_list):
"""
For two graph components get the shared chunks from which entities for both components were extracted
Parameters
----------
component1 : list
A list contain the entities of component1
component2 : list
A list contain the entities of component2
entity_chunks_list : dict
A dictionary containing all entities per chunk as ids
Returns
-------
list, dict
A list containing the chunk_ids of all shared chunks
A dictionary containing for each shared chunk the nodes from component1 and component2 (seperated)
"""
entities_component_1 = set(component1)
entities_component_2 = set(component2)
shared_chunks = []
keys = list(entity_chunks_list.keys())
intersections = {}
for i in range(len(entity_chunks_list)):
chunk_entities = set(entity_chunks_list[keys[i]])
intersection_c1 = chunk_entities.intersection(entities_component_1)
intersection_c2 = chunk_entities.intersection(entities_component_2)
if len(intersection_c1) > 0 and len(intersection_c2) > 0:
shared_chunks.append(keys[i])
intersections[keys[i]] = {"c1": intersection_c1, "c2": intersection_c2}
return shared_chunks, intersections
def translate_entity_list(entity_list, reverse_entities_dict):
"""
Translate a list of entity_ids back to the actual entities
Parameters
----------
entity_list : list
A set of all entities as a list
reverse_entities_dict:
A dictionary containing the entity_id to entity mapping
Returns
-------
list
A list of entities
"""
return [reverse_entities_dict[entity] for entity in entity_list]
def extract_relation_from_llm_output(llm_output, entities_c1, entities_c2):
"""
Extract a dictionary from the llm output
Parameters
----------
llm_output : str
The llm output
entities_c1 : list
The entities of component1
entities_c1 : list
The entities of component2
Returns
-------
dict
The relation as a dictionary
"""
x = re.search(r"\{.*?\}", llm_output, re.DOTALL)
if x is None:
return None
try:
relation = json.loads(x.group(0))
except json.JSONDecodeError:
return None
keys = relation.keys()
if "node_1" not in keys or "node_2" not in keys or "edge" not in keys:
return None
if relation["node_1"] in entities_c1 and relation["node_2"] in entities_c2:
return relation
else:
return None
def add_relations_to_data(entity_and_relation_df, new_relations):
"""
Add a relation to the table of relations
Parameters
----------
entity_and_relation_df : pandas.dataframe
Table of nodes and relations between the nodes
new_relations : dict
A new relation
Returns
-------
pandas.dataframe
The updated dataframe
"""
for relation in new_relations:
node_1 = relation["node_1"]
node_2 = relation["node_2"]
edge = relation["edge"]
chunk_id = relation["chunk_id"]
pos = len(entity_and_relation_df.index)
entity_and_relation_df.loc[pos] = [node_1, node_2, edge, chunk_id]
return entity_and_relation_df
def connect_with_llm(data, text_chunks, rate_limit):
"""
Connect the pieces of the knowlege graph by extracting new relations between disjoint
graph pieces from the text chunks using the llm
Parameters
----------
data : pandas.dataframe
Table of nodes and relations between the nodes
text_chunks : list
A list of dictionaries containing the text chunks
rate_limit : int
The maximum number of requests that can be made to the LLM within a specified
timeframe.
Returns
-------
pandas.dataframe
A table of the old and new relations
"""
# get components of unconnected graph
entities = extract_entity_set(data)
entities_dict, relations_list = index_entity_relation_table(data, entities)
components = extract_components(relations_list)
number_components = len(components)
logger.info(f"Before connecting {number_components} components")
# get chunk information about contained entities
entity_chunks_list = get_entities_by_chunk(data, entities_dict)
# try to combine components
# sort existing components by length
components.sort(reverse=True, key=len)
reverse_entities_dict = {v: k for k, v in entities_dict.items()}
# wait 60s so that available requests are refreshed
time.sleep(60)
# try connecting small components to the biggest component
connections = 0
llm_calls = 0
connecting_relations = []
for i in range(1, len(components)):
main_component = components[0]
current_component = components[i]
sharedChunks, intersections = get_shared_chunks_by_component(
main_component, current_component, entity_chunks_list
)
# try to find new connection within each chunk
for key_shared_chunk in sharedChunks:
chunk_intersections = intersections[key_shared_chunk]
main_chunk_entities = chunk_intersections["c1"]
current_chunk_entities = chunk_intersections["c2"]
main_chunk_entities = translate_entity_list(
main_chunk_entities, reverse_entities_dict
)
current_chunk_entities = translate_entity_list(
current_chunk_entities, reverse_entities_dict
)
# make call to llm with chunk and the entities of both components from that chunk
text_chunk = text_chunks[int(key_shared_chunk)]
# only make calls to the llm if request rate allows for it
if llm_calls > 0 and llm_calls % rate_limit == 0:
time.sleep(60)
connecting_relation = llama3.check_for_connecting_relation_(
text_chunk["page_content"], main_chunk_entities, current_chunk_entities
)
llm_calls += 1
relation = extract_relation_from_llm_output(
connecting_relation, main_chunk_entities, current_chunk_entities
)
# if relation is extracted than a valid relation containing only existing entities can be added
if relation is not None:
relation["chunk_id"] = key_shared_chunk
connecting_relations.append(relation)
connections += 1
break
logger.info(
f"Made {connections} new connections and thereby reduced the graph "
f"to {number_components - connections} components "
)
data = add_relations_to_data(data, connecting_relations)
return data