-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate-matmul-code.py
213 lines (175 loc) · 6.89 KB
/
generate-matmul-code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import pathlib
import skeletons.matmul as generate
import codelet_generator
import randomstate
import checksum
import shutil
import delegator
import datetime
import random
import pandas as pd
import os
import stat
import loguru
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', type=pathlib.Path, default=pathlib.Path('./out'))
parser.add_argument('--temp_dir', type=pathlib.Path, default=pathlib.Path('./tmp'))
parser.add_argument('--tiers', type=int, nargs='+', default=[1, 2])
parser.add_argument('--unit', type=str, default='control')
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--max_attempts', type=int, default=3)
parser.add_argument('--batch_prefix', type=str, default=None)
parser.add_argument('--random_state', type=pathlib.Path, default=None)
parser.add_argument('--experiment_name', type=str, default=None)
parser.add_argument('--how_many', type=int, default=1)
args = parser.parse_args()
if args.random_state is not None:
randomstate.restore(args.random_state)
checksums = checksum.gather_checksums(args.output_dir, '*/*/*/core.c')
logger = loguru.logger
experiment_name = args.experiment_name
if args.experiment_name is None:
t = datetime.datetime.now()
experiment_name = f'experiment-{t.year}{t.month:02d}{t.day:02d}-{t.hour:02d}{t.minute:02d}'
def generate_batch(batch, n_codelets, max_try_factor=3, params_prototype=None):
max_tries = n_codelets * max_try_factor
sis = []
params = {}
for _ in range(max_tries):
index = len(sis) + 1
result = generate_codelet(batch, index, params_prototype)
if result is not None:
code, codelet, si, codegen_params = result
params[code] = codegen_params
logger.debug(f'Generated {batch}/{code}/{codelet}')
sis.append(si)
if len(sis) == n_codelets:
break
shutil.copytree(args.temp_dir/batch, args.output_dir/batch)
codelet_generator.generate_batch_summary_flex(
args.output_dir, batch, sis, generate.source_info_header
)
return sis, params
def generate_codelet(batch, index, params_prototype=None):
t = datetime.datetime.now()
code = f'program_{index:02d}'
codelet = f'{code}_de'
codelet_dir = codelet_generator.codelet_dir(args.temp_dir, batch, code, codelet)
codelet_path = pathlib.Path(codelet_dir)
codelet_path.mkdir(parents=True, exist_ok=True)
randomstate_path = codelet_path / 'random.state'
randomstate.checkpoint(randomstate_path)
codegen_params = generate.randomly_create_code_generation_parameters()
gen_result = generate.gen_program(codegen_params)
if gen_result is None:
return None
skeleton, si, config, default_inputs = gen_result
if skeleton is None:
return None
si['batch'] = batch
si['name'] = code
si['codelet name'] = codelet
si['generate function'] = 'skeletons.matmul.gen_program'
config.template_dir = 'codelet-template-int-inputs'
config.output_dir = codelet_generator.generate_codelet_files(
args.temp_dir, batch, code, codelet, 10, default_inputs
)
skeleton.generate_code(config)
new_checksum = checksum.get_checksum(codelet_path / 'core.c')
if new_checksum in checksums:
logger.debug('codelet already generated')
return None
return code, codelet, si, codegen_params
def extract_loop(batch_path):
loops = {}
for path in sorted(pathlib.Path(batch_path).glob('*/*/core.c')):
name = path.parts[-3]
# names.append(f'LoopGen: {codelet}_de')
lines = []
with open(path) as f:
function_start = False
for line in f:
if 'core(' in line:
function_start = True
continue
if 'return 0' in line:
break
if not function_start:
continue
lines.append(line)
no_empty = []
for line in lines:
if len(line.strip()) > 0:
no_empty.append(line)
# codes.append(''.join(no_empty))
code = ''.join(no_empty)
loops[name] = code
return loops
# Overview
# 1) generate batch
# 2) run cape scripts
# 3) parse csv file to see whether the generated codelets have what we want
control_unit_nodes = [
'Stall[RS]_%',
'Stall[SB]_%',
'Stall[LB]_%',
'Stall[LM]_%',
'Stall[RS]_%',
'Stall[ROB]_%',
]
# save all data in full_df
full_df = pd.DataFrame()
# generate batch
batch_prefix = experiment_name
if args.batch_prefix is not None:
batch_prefix = args.batch_prefix
batch = f'{batch_prefix}-batch'
source_infos, codegen_params = generate_batch(batch,
args.batch_size,
max_try_factor=3)
# run 'build_vrun_script batch' to generate vrun_new.sh
current_dir = pathlib.Path('.')
log_path = current_dir / f'{batch}.log'
vrun_dir = current_dir / '..' / 'cape-experiment-scripts' / 'vrun'
vrun_input = f'{current_dir.resolve().name}/{args.output_dir}/{batch}'
logger.debug(vrun_input)
vrun_sh = 'vrun_matmul_new.sh'
command = delegator.run(f'./build_vrun_matmul {vrun_input} matmul_sizes.txt {vrun_sh}', cwd=vrun_dir)
logger.debug(command.out)
logger.debug(command.err)
# run the newly generated vrun script
vrun_new_sh = vrun_dir / vrun_sh
st = os.stat(vrun_new_sh)
os.chmod(vrun_new_sh, st.st_mode | stat.S_IEXEC | stat.S_IXGRP | stat.S_IXOTH)
logger.info(f'Running cape script. To view ')
logger.info(f'less +F {log_path.resolve()}')
command = delegator.run(f'./{vrun_sh} test | tee {log_path.resolve()}', cwd=vrun_dir)
# find the generated SI data csv file
line_start = command.out.index("Cape SI data")
si_filename_start = command.out.index(":", line_start) + 2
si_filename_end = command.out.index(".csv", line_start) + 4
si_path = command.out[si_filename_start:si_filename_end].strip()
si_csv = pathlib.Path(si_path)
si_df = pd.read_csv(si_path)
# add source info to the dataframe
loops = extract_loop(args.output_dir / batch)
source_info_dict = {}
source_info_dict['si name'] = []
source_info_dict['code'] = []
for source_info in source_infos:
for k, v in source_info.m.items():
if k not in source_info_dict:
source_info_dict[k] = []
source_info_dict[k].append(v)
source_info_dict['si name'].append(f'LoopGen: {source_info["name"]}_de')
source_info_dict['code'].append(loops[source_info['name']])
source_info_df = pd.DataFrame.from_dict(source_info_dict)
logger.debug(source_info_df)
si_df = pd.merge(si_df, source_info_df, how="outer", left_on="Name", right_on="si name")
full_df = full_df.append(si_df)
columns = ['Name', 'Tier', 'Sat_Node', '# statements', 'code']
full_df = full_df.reindex()
logger.info('*********** All codelets generated **********')
logger.info(f'\n{full_df[columns]}')
full_df.to_csv(f'{args.output_dir}/{experiment_name}_codelet_all.csv', index = True, header = True)