|
| 1 | + |
| 2 | + |
| 3 | +setwd(""C:/Users/SUSM/Documents/assignmentdata/UCI HAR Dataset") |
| 4 | +
|
| 5 | +list.files("./test") |
| 6 | +
|
| 7 | +###step1: Merge the Test and Train data sets to create merged data sets of Test and Train |
| 8 | +
|
| 9 | +TestX<-read.table("./test/X_test.txt") |
| 10 | +TestY<-read.table("./test/y_test.txt") |
| 11 | +Testsubject<-read.table("./test/subject_test.txt") |
| 12 | +
|
| 13 | +list.files("./train") |
| 14 | +
|
| 15 | +TrainX<-read.table("./Train/X_train.txt") |
| 16 | +TrainY<-read.table("./Train/y_train.txt") |
| 17 | +Trainsubject<-read.table("./Train/subject_train.txt") |
| 18 | +
|
| 19 | +mergedX<-rbind(TestX,TrainX) ## rowbind Test and Training sets to create mergedX dataset |
| 20 | +mergedY<-rbind(TestY,TrainY) |
| 21 | +mergedsubject<-rbind(Testsubject,Trainsubject) |
| 22 | +
|
| 23 | +## step2: Extract only the measurements of only mean and standard deviation |
| 24 | +
|
| 25 | +
|
| 26 | +features<-read.table("features.txt") ## read features.txt file into features data frame |
| 27 | +
|
| 28 | + ## using grep(),extract variables ending with mean() and std() from features dataset |
| 29 | + ## and assign to features_meanstd subset |
| 30 | +features_meanstd<-features[grep("mean\\>|std",features$V2),] |
| 31 | +
|
| 32 | +
|
| 33 | +## step 3: and label the data with descriptive variable names |
| 34 | +features_meanstd[,2]<-sub("tB","timeB",features_meanstd[,2]) |
| 35 | +features_meanstd[,2]<-sub("tG","timeG",features_meanstd[,2]) |
| 36 | + |
| 37 | +features_meanstd[,2]<-sub("f","Freq",features_meanstd[,2]) |
| 38 | + ## find and replace illegal characters with '.' in the variable names of dataset |
| 39 | +features_meanstd[,2]<-gsub("[()]","",features_meanstd[,2]) |
| 40 | +features_meanstd[,2]<-gsub("-",".",features_meanstd[,2]) |
| 41 | +
|
| 42 | + |
| 43 | +mergedXmeanstd<-mergedX[,c(features_meanstd[,1])] |
| 44 | + |
| 45 | +names(mergedXmeanstd)<-c(features_meanstd[,2]) ## rename column names with descriptive variable names assigned in features_meanstd |
| 46 | +
|
| 47 | +## step 4: descriptive activity names to name the activities in the data |
| 48 | +
|
| 49 | +names(mergedY)<-c("Activity") ## rename column name to Activity in mergedY dataset |
| 50 | +names(mergedsubject)<-c("Subject") ## rename column name to Subject in mergedsubject dataset |
| 51 | +
|
| 52 | +activity_labels<-read.table("activity_labels.txt") |
| 53 | +activitylabels<-activity_labels[,2] |
| 54 | +mergedY$Activity<-as.factor(mergedY$Activity) |
| 55 | +mergedY$Activity<-factor(mergedY$Activity,labels=activitylabels) |
| 56 | +
|
| 57 | + ## cbind X data (containing mean & std),Y and subject datasets to create one mergeddata data set |
| 58 | +mergeddata<-cbind(mergedsubject,mergedY,mergedXmeanstd) |
| 59 | +
|
| 60 | +## step5: create tidy data set from the one data set created above |
| 61 | +
|
| 62 | +library(reshape2) |
| 63 | + |
| 64 | +
|
| 65 | +melteddata<-melt(mergeddata, id.vars=c("Subject","Activity"),measure.vars=c(features_meanstd[,2])) |
| 66 | + |
| 67 | +casteddata<-dcast(melteddata,Subject+Activity ~ variable, mean) |
| 68 | +
|
| 69 | +## write the casteddata into tidydata.txt file using write.table |
| 70 | +
|
| 71 | +write.table(castdata,file="tidydata.txt", sep="\t", row.name=FALSE) |
0 commit comments