-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdetect_sqi.m
419 lines (361 loc) · 14.3 KB
/
detect_sqi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
function [ qrs, sqi, qrs_comp, qrs_header ] = detect_sqi(data, header, fs, opt)
%[ beat, sqi ] = detect_sqi(DATA, HEADER, FS) detects QRS complexes in the given
% matrix of data. HEADER must contain signal names which map to the list below.
% FS must contain a numeric sampling frequency.
%
%[ QRS, QRS_COMP, QRS_HEADER ] = detect_sqi(DATA, HEADER, FS) also returns
%the constitutent QRS detectors (QRS_COMP) and a header describing each
%detector (QRS_HEADER).
% This function uses an estimate of signal quality to switch between
% signals.
% DATA - NxD matrix of N samples with D signals. Each signal should correspond
% to a signal name in HEADER. Do not include time as a singal.
% HEADER - 1xD cell array of strings, containing the signal name (e.g. 'ECG', see below)
% FS - scalar double, containing the sampling frequency
% This QRS detector fuses beats detected on the ECG and the ABP waveforms
%
% HEADER - the following are acceptable signal names
% ECG - electrocardiogram
% ABP - arterial blood pressure
% ART - arterial blood pressure
% SV - stroke volume
% PPG - photoplethysmogram
% Dependencies:
%
% 1) This function requires the WFDB Toolbox for MATLAB and Octave.
% For information on how to install the toolbox, please see:
% http://www.physionet.org/physiotools/matlab/wfdb-app-matlab/
%
% 2) The Toolbox is supported only on 64-bit MATLAB 2013a and 2013b
% and on GNU Octave 3.6.4 and later, on Linux, Mac OS X, and
% Windows.
%% option setting
% check if options are input
if nargin<4
% default options
[ opt ] = setDetectOptions;
else
if ~isstruct(opt)
error('detect:invalidOptions',...
'Second argument should be a structure.');
else
[ opt ] = setDetectOptions(opt);
end
end
opt.LG_REC = size(data,1) ./ fs; % length of the record in seconds
opt.N_WIN = ceil(opt.LG_REC/opt.REG_WIN); % number of windows in the signal
%% PRE-GAME
% if true, saves detections to WFDB format annotation files
SAVE_STUFF = opt.SAVE_STUFF;
% note that we need to write out files in order to call gqrs
% this is really slow.. could do with improvement..
recordName = ['TMP_' datestr(now,'dd-mm-yyyy-HHMMSSFFF')];
% Flag which marks suspected pacing, as indicated by large ABP delays
SUSPECTED_PACING = 0;
[ idxECG, idxABP, idxPPG, idxSV ] = getSignalIndices(header);
if numel(fs) == 1
% assume all signals have the same sampling frequency
fs = repmat(fs,1,numel(header));
end
%% Simple mode
if opt.SIMPLEMODE==1
% we only use the first ECG and first ABP
if numel(idxECG)>1
idxECG = idxECG(1);
end
if numel(idxABP)>1
idxABP = idxABP(1);
end
end
%% Inform the user what signals will be used
fprintf('Using %d ECG and %d ABP leads. ',numel(idxECG), numel(idxABP));
if opt.ENABLE_OTHER_DETECTORS == 0
fprintf('Not using PPG/SV.\n');
else
fprintf('Using PPG/SV if available.\n');
end
%% INITIALISE
% Pre-allocate space
% we will subsample cells to only contain relevant signals later
[N,M] = size(data);
ann_jqrs = cell(1,M);
ann_gqrs = cell(1,M);
sqi_ecg = cell(1,M);
ppg = cell(1,M);
sv = cell(1,M);
sqi_bp = cell(1,M);
abp = cell(1,M);
sqi_abp = cell(1,M);
abp_delay = nan(1,M);
ppg_delay = nan(1,M);
sv_delay = nan(1,M);
%% Write the data out to wfdb
%TODO: this is required because gqrs/wabp run on .dat/.hea files
% ideally, we would have these functions run on matlab data directly
wrsamp((transpose(1:N)-1),data*10000,recordName,fs,10000,'16+24');
%% ECG PEAK DETECT
if ~isempty(idxECG)
for m=idxECG
fprintf('Lead %d of %d. Signal %d (%s).\n',...
find(m==idxECG,1), numel(idxECG), m, header{m});
%=== call jqrs
fprintf('\tRunning jqrs... ');
ann_jqrs{m} = run_qrsdet_by_seg_ali(data(:,m),fs(m),opt);
fprintf('done.\n');
%=== call gqrs
% usage: gqrs -r recordName -s signalIndex
fprintf('\tRunning gqrs... ');
gqrs(recordName,[],[],m,[],['gqrs' num2str(m)]);
% load in gqrs
try
ann_gqrs{m} = rdann(recordName,['gqrs' num2str(m)]);
catch
% rdann sometimes crashes when loading empty qrs annotations
ann_gqrs{m} = [];
end
fprintf('done.\n');
%=== delete gqrs' output
if SAVE_STUFF==0
delete([recordName '.gqrs' num2str(m)]);
end
%=== convert to time
ann_jqrs{m} = ann_jqrs{m}(:) ./ fs(m);
ann_gqrs{m} = ann_gqrs{m}(:) ./ fs(m);
end
end % end 'if ECG exists' segment
%% ABP (if present)
if ~isempty(idxABP)
for m=idxABP
switch opt.ABPMethod
case 'delineator'
[onsetp,peakp] = delineator(data(:,m),fs(m));
abp{m} = corrDelineator(data(:,m),peakp,onsetp,fs(m),1);
abp{m} = abp{m}(:); % enforce column vector
otherwise % default is wabp for unrecognised strings
wabp(recordName,[],[],[],m);
try
abp{m} = rdann(recordName,'wabp');
catch
abp{m} = [];
end
end
%=== get SQI for ABP signals
[ sqi_bp{m}, header_sq, sqi_bp_values, header_sqi ] = calcABPSQI(data(:,m), abp{m}, fs(m));
abp{m} = abp{m} / fs(m);
switch opt.DELAYALG
case {'crosscorr','cc'}
%=== use cross correlation to map ABP back to ECG
if isempty(idxECG)
abp_delay(m)=0.2; % hardcoded delay if no ECG is available
else
lagVector = mapABPtoECGcc(data(:,idxECG(1)), data(:,m), fs(m));
if numel(lagVector)>0; lagVector(isnan(lagVector)) = []; end
if numel(lagVector)>0; lagVector(lagVector==0) = []; end
if isempty(lagVector)
abp_delay(m) = 0.2;
else
lagVector = sort(lagVector);
abp_delay(m) = lagVector( ceil(numel(lagVector)/2) ) / fs(m); % take median
end
end
abp{m} = abp{m} - abp_delay(m);
otherwise
%=== we loop through the ECGs - if we find a good one, we use
%it, otherwise, we continue to the next
for l=idxECG
[abp{m}, sqi_bp{m}, abp_delay(m), foundMatch] = mapABPtoRR(abp{m}, ann_gqrs{l}, sqi_bp{m});
% this means we found a decent segment to get rrDiff
if foundMatch==true
break;
end
end
end
%=== output to file
if SAVE_STUFF == 1 && ~isempty(abp{m})
wrann(recordName,['wabpmapped' num2str(m)],ceil(abp{m}*fs(m)),[],[],[],[]);
movefile([recordName '.wabp'],[recordName '.wabp' num2str(m)]);
else
if exist([recordName '.wabp'],'file')==2
delete([recordName '.wabp']);
end
end
end
if opt.USE_PACING==1
if strcmp(opt.DELAYALG,'map') && min(abp_delay) > 0.4
SUSPECTED_PACING = 1;
% undo the delay on ABP peaks, and replace it with default 0.2
for m=idxABP
abp{m} = abp{m} + abp_delay(m) - 0.2;
abp_delay(m) = 0.2;
end
end
end
end
%% SV (if present)
if opt.ENABLE_OTHER_DETECTORS == 1 && ~isempty(idxSV)
for m=idxSV
sv{m} = C2014_SVDetector(data(:,m),fs(m));
sv{m} = sv{m}(:) ./ fs(m);
if ~isempty(ann_gqrs)
[sv{m},dummy,sv_delay(m)] = mapSVtoRR(sv{m}, ann_gqrs{1});
else
sv_delay(m) = 0.2;
sv{m} = ceil(sv{m} - sv_delay(m)*fs(m));
end
%=== output to file
if SAVE_STUFF == 1 && ~isempty(sv{m})
wrann(recordName,['sv' num2str(m)],sv{m},[],[],[],[]);
end
end
end
%% PPG (if present)
if opt.ENABLE_OTHER_DETECTORS == 1 && ~isempty(idxPPG)
for m=idxPPG
ppg{m} = run_ppgdet_by_seg(data(:,m),fs(m),15,0.4,'MECG');
ppg{m} = ppg{m}(:) ./ fs(m);
ppg{m} = mapSVtoRR(ppg{m}, ann_jqrs{1}); %-- yes the interval seems to be the same as SV
if ~isempty(ann_gqrs)
[ppg{m},dummy,ppg_delay(m)] = mapSVtoRR(ppg{m}, ann_gqrs{1});
else
ppg_delay(m) = 0.2;
ppg{m} = ceil(ppg{m} - ppg_delay(m)*fs(m));
end
%=== output to file
if SAVE_STUFF == 1 && ~isempty(ppg{m})
wrann(recordName,['ppg' num2str(m)],ppg{m},[],[],[],[]);
end
end
end
%% ECG LEAD WISE SQI
for m=idxECG
fprintf('\tCalculating windowed sqi on signal %d... ', m);
if ~isempty(ann_gqrs{m}) && ~isempty(ann_jqrs{m})
%=== calculate the SQI for each ECG lead
% all tsqi (start time of SQI window) will be identical, so
% no need for a cell to store these
[ sqi_ecg{m}, tsqi ] = ecgsqi( ann_gqrs{m}, ann_jqrs{m},...
opt.THR, opt.SIZE_WIND, opt.REG_WIN, opt.LG_MED,...
opt.LG_REC(m), opt.N_WIN(m));
else
sqi_ecg{m} = zeros(opt.N_WIN(m),1);
tsqi = 0:opt.REG_WIN:opt.LG_REC(m);
tsqi(tsqi==opt.LG_REC(m)) = [];
tsqi = tsqi(:);
end
fprintf('done.\n');
end
for m=idxABP
%=== convert SQI from beat wise to window by window
xi = [0:opt.REG_WIN:opt.LG_REC+(opt.REG_WIN/2);
(0:opt.REG_WIN:opt.LG_REC+(opt.REG_WIN/2)) + opt.SIZE_WIND];
if numel(xi)<=2
%=== we never switch because the record is too short
sqi_abp{m} = mean(sqi_bp{m}(:,1));
%=== we are switching less frequently than our SQI win size
% so we can calculate window by window SQIs for ABP easily
elseif xi(3) >= xi(2)
xi = xi(:);
idxLast = find(xi>opt.LG_REC(m),1);
if mod(idxLast,2)==0; xi = xi(1:idxLast); end
%=== first we create an index, idxMap
% this represents which window each beat belongs to
% we can then use idxMap to determine if a beat is in window w
[tmp,idxMap] = histc(abp{m},xi);
tmp = tmp(1:max(idxMap));
% if tmp has 0s, we set them to 1
% the ABP will consequently be 0 / 1 == 0
idxBad = tmp==0;
if any(idxBad)
tmp(idxBad) = 1;
end
tmp2 = accumarray(idxMap(idxMap~=0),sqi_bp{m}(idxMap~=0,1)) ./ tmp;
idxKeep = unique(idxMap);
idxKeep(idxKeep==0) = [];
sqi_abp{m} = zeros(size(xi));
sqi_abp{m}(idxKeep) = tmp2(idxKeep);
sqi_abp{m} = sqi_abp{m}(1:2:end);
else
%=== we have more than 1 switch event per SQI window
% this prevents directy application of histc, have to be a
% bit more clever
% create windows for the SQI
tabpsqi = bsxfun(@plus, ...
0:opt.SIZE_WIND:opt.LG_REC(m)+opt.SIZE_WIND-0.01, ...
transpose(0:opt.REG_WIN:opt.SIZE_WIND-0.01));
% -0.01 prevents duplicate window at bottom of xi_all
% each column in xi_all moves through the signal
% each row is a different starting point from 0:SIZE_WIN
% so each row allows us to calculate the SQI using histc
% then we move to the next row to do the same
% then we vertically concatenate it all together
sqi_abp{m} = zeros(opt.SIZE_WIND/opt.REG_WIN,size(tabpsqi,2)-1);
for d=1:size(tabpsqi,1)
xi = tabpsqi(d,:);
% idxMap finds which window each abp beat corresponds
[tmp,idxMap] = histc(abp{m},xi);
% if tmp has 0s, we set them to 1
% the ABP will consequently be 0 / 1 == 0
idxBad = tmp==0;
if any(idxBad)
tmp(idxBad) = 1;
end
% accumarray sums the ABP SQIs with the same idxMap
% dividing by tmp makes abpsqi{m} the mean SQI
sqi_abp{m}(d,1:max(idxMap)) = accumarray(idxMap(idxMap~=0),sqi_bp{m}(idxMap~=0,1)) ./ tmp(1:max(idxMap));
end
sqi_abp{m} = sqi_abp{m}(:);
%=== values of 'NaN' are due to a division by 0
% these occur if there are no beats in the given window
% we should probably call these segments bad quality!
sqi_abp{m}(isnan(sqi_abp{m})) = 0;
%=== now we create the final abp times
tabpsqi = tabpsqi(:,1:end-1); % histc always excludes last col
tabpsqi = tabpsqi(:);
%=== now we delete the indices after the end of the rec
sqi_abp{m}(tabpsqi>=opt.LG_REC(m)) = [];
end
end
%JOs update ecg_sqi for suspected pacing beats...
% force usage of abp if good quality
if opt.USE_PACING == 1 && SUSPECTED_PACING==1
for l=idxECG
sqi_ecg{l} = zeros(size(sqi_ecg{l}));
end
end
%=== set up for switching
qrs_comp = [ann_gqrs(idxECG), abp(idxABP)];
sqi = [sqi_ecg(idxECG), sqi_abp(idxABP)];
%=== create the header
qrs_header = [strcat(repmat({'gqrs'}, 1, sum(~isempty(ann_jqrs(idxECG)))), arrayfun(@num2str, 1:sum(~isempty(ann_jqrs(idxECG))), 'UniformOutput', false)),...
%strcat(repmat({'gqrs'}, 1, sum(~isempty(ann_jqrs(idxABP)))), arrayfun(@num2str, 1:sum(~isempty(ann_jqrs(idxABP))), 'UniformOutput', false)),...
strcat(repmat({'abp'}, 1, sum(~isempty(ann_jqrs(idxABP)))), arrayfun(@num2str, 1:sum(~isempty(ann_jqrs(idxABP))), 'UniformOutput', false))];
% use a delay of 100ms for the ECG, as it is used in the switching
% function to check for missed beats on SQI switching transitions
abp_delay = [0.1*ones(1,numel(idxECG)),abp_delay(idxABP)];
N_WIN_MAX = max(opt.N_WIN);
%=== perform switching
if numel(qrs_comp)==1
% only one set of QRS detections is present - so no switching is
% possible
qrs = qrs_comp{1};
else
% for each SQI provided
for m=1:numel(sqi)
% if we have fewer windows in this lead, extend it to the signal
% size
if numel(sqi{m})<N_WIN_MAX
sqi{m} = [sqi{m};zeros(N_WIN_MAX - numel(sqi{m}),1)];
elseif numel(sqi{m})>N_WIN_MAX
% this if seems superfluous - we should never have more windows
% than the max
sqi{m} = sqi{m}(1:opt.N_WIN_MAX);
end
end
qrs = sqi_switching(qrs_comp,sqi,tsqi,opt.SQI_THR,abp_delay,0);
end
if SAVE_STUFF==0
% clean up folder
delete([recordName '.dat']);
delete([recordName '.hea']);
end
end