-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection.py
45 lines (40 loc) · 1.61 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Object Detection
# Importing the libraries
import torch
from torch.autograd import Variable
import cv2
from data import BaseTransform, VOC_CLASSES as labelmap
from ssd import build_ssd
import imageio
# Defining a function that will do the detections
def detect(frame, net, transform):
height, width = frame.shape[:2]
frame_t = transform(frame)[0]
x = torch.from_numpy(frame_t).permute(2, 0, 1)
x = Variable(x.unsqueeze(0))
y = net(x)
detections = y.data
scale = torch.Tensor([width, height, width, height])
# detections = [batch, number of classes, number of occurence, (score, x0, Y0, x1, y1)]
for i in range(detections.size(1)):
j = 0
while detections[0, i, j, 0] >= 0.6:
pt = (detections[0, i, j, 1:] * scale).numpy()
cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), (255, 0, 0), 2)
cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2, cv2.LINE_AA)
j += 1
return frame
# Creating the SSD neural network
net = build_ssd('test')
net.load_state_dict(torch.load('ssd300_mAP_77.43_v2.pth', map_location = lambda storage, loc: storage))
# Creating the transformation
transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0))
# Doing some Object Detection on a video
reader = imageio.get_reader('horse.mp4')
fps = reader.get_meta_data()['fps']
writer = imageio.get_writer('output.mp4', fps = fps)
for i, frame in enumerate(reader):
frame = detect(frame, net.eval(), transform)
writer.append_data(frame)
print(i)
writer.close()