-
-
Notifications
You must be signed in to change notification settings - Fork 359
/
Copy path1d_convolution.rs
99 lines (81 loc) · 2.93 KB
/
1d_convolution.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
use std::fs::File;
use std::io::Write;
use std::cmp::max;
fn main() {
let x = normalize(create_sawtooth(200));
let y = normalize(create_sawtooth(200));
let len_x = x.len();
let len_y = y.len();
let full_linear_output = convolve_linear(&x, &y, len_x + len_y - 1);
let simple_linear_output = convolve_linear(&x, &y, len_x);
let cyclic_output = convolve_cyclic(&x, &y);
// Save the convolutions to plot them.
// The way I do it is a little weird but it is to store the data the same way as the other programs
let mut full_file = File::create("full_linear.dat").unwrap();
for i in full_linear_output {
writeln!(full_file, "{i}").unwrap();
}
full_file.sync_all().unwrap();
let mut simple_file = File::create("simple_linear.dat").unwrap();
for i in simple_linear_output {
writeln!(simple_file, "{i}").unwrap();
}
simple_file.sync_all().unwrap();
let mut cyclic_file = File::create("cyclic.dat").unwrap();
for i in cyclic_output {
writeln!(cyclic_file, "{i}").unwrap();
}
cyclic_file.sync_all().unwrap();
}
// Generates a sawtooth function with a given length.
fn create_sawtooth(length: usize) -> Vec<f64> {
let mut array: Vec<f64> = Vec::with_capacity(length);
for i in 0..length {
array.push((i+1) as f64 / length as f64); // divide by length for normalization
}
array
}
// Normalizes the given array.
fn normalize(array: Vec<f64>) -> Vec<f64> {
let norm = norm(&array);
let mut output: Vec<f64> = Vec::with_capacity(array.len());
for value in array {
output.push(value / norm);
}
output
}
// Calculates the norm of an array.
fn norm(array: &[f64]) -> f64 {
let sum = array.iter().map(|i| i * i).sum::<f64>();
sum.sqrt()
}
// Modulus function that handles negative values correctly.
// Assumes that y >= 0.
fn modulus(x: isize, y: usize) -> usize {((x%y as isize) as usize + y) % y}
fn convolve_linear(signal: &Vec<f64>, filter: &Vec<f64>, output_size: usize) -> Vec<f64> {
let mut output = Vec::with_capacity(output_size);
for i in 0..(output_size as isize) {
let mut sum: f64 = 0.;
for j in max(0, i - filter.len() as isize)..=i {
if j < signal.len() as isize && (i - j) < filter.len() as isize {
sum += signal[j as usize] * filter[(i-j) as usize];
}
}
output.push(sum);
}
output
}
fn convolve_cyclic(signal: &Vec<f64>, filter: &Vec<f64>) -> Vec<f64> {
let output_size = max(signal.len(), filter.len());
let mut output: Vec<f64> = Vec::with_capacity(output_size);
for i in 0..output_size {
let mut sum: f64 = 0.;
for j in 0..output_size {
if modulus((i - j) as isize, output_size) < filter.len() {
sum += signal[modulus((j - 1) as isize, output_size)] * filter[modulus((i - j) as isize, output_size)];
}
}
output.push(sum);
}
output
}