Skip to content

Commit d5090ba

Browse files
committed
adaboost semi-supervised learning
1 parent 6d7856a commit d5090ba

File tree

904 files changed

+726462
-1
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

904 files changed

+726462
-1
lines changed

.DS_Store

10 KB
Binary file not shown.

Adaboosting-Yang-Liu

+1
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
Subproject commit 78091cd847f7da20ddae85d1e2480ad2d9e99766

BasicNeuralNetwork.ipynb

+190
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,190 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 5,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import tensorflow as tf\n",
10+
"import pandas as pd\n",
11+
"import numpy as np"
12+
]
13+
},
14+
{
15+
"cell_type": "code",
16+
"execution_count": 6,
17+
"metadata": {},
18+
"outputs": [],
19+
"source": [
20+
"# define an empty list\n",
21+
"x_train = []\n",
22+
"\n",
23+
"# open file and read the content in a list\n",
24+
"with open('listfile.txt', 'r') as filehandle:\n",
25+
" for line in filehandle:\n",
26+
" # remove linebreak which is the last character of the string\n",
27+
" currentPlace = line[:-1]\n",
28+
"\n",
29+
" # add item to the list\n",
30+
" x_train.append(currentPlace)\n",
31+
"# define an empty list\n",
32+
"y_train = []\n",
33+
"\n",
34+
"# open file and read the content in a list\n",
35+
"with open('listfile1.txt', 'r') as filehandle:\n",
36+
" for line in filehandle:\n",
37+
" # remove linebreak which is the last character of the string\n",
38+
" currentPlace = line[:-1]\n",
39+
"\n",
40+
" # add item to the list\n",
41+
" y_train.append(currentPlace)"
42+
]
43+
},
44+
{
45+
"cell_type": "code",
46+
"execution_count": 7,
47+
"metadata": {},
48+
"outputs": [],
49+
"source": [
50+
"import ast\n",
51+
"temp1=[]\n",
52+
"for x in x_train:\n",
53+
" temp1.append(ast.literal_eval(x))\n",
54+
"x_train=temp1\n",
55+
"x_train = np.asarray(x_train)\n",
56+
"import ast\n",
57+
"temp2=[]\n",
58+
"for x in y_train:\n",
59+
" temp2.append(ast.literal_eval(x))\n",
60+
"y_train=temp2\n",
61+
"y_train = np.asarray(y_train)"
62+
]
63+
},
64+
{
65+
"cell_type": "code",
66+
"execution_count": 14,
67+
"metadata": {},
68+
"outputs": [
69+
{
70+
"name": "stdout",
71+
"output_type": "stream",
72+
"text": [
73+
"Epoch 1/3\n",
74+
"693/693 [==============================] - 0s 637us/step - loss: 9.9925 - acc: 0.1400\n",
75+
"Epoch 2/3\n",
76+
"693/693 [==============================] - 0s 54us/step - loss: 3.5667 - acc: 0.1674\n",
77+
"Epoch 3/3\n",
78+
"693/693 [==============================] - 0s 61us/step - loss: 3.1353 - acc: 0.1674\n"
79+
]
80+
}
81+
],
82+
"source": [
83+
"#Using Keras Sequentail Model, this is bound to change\n",
84+
"model = tf.keras.models.Sequential()\n",
85+
"#Using 3 hidden layers with 128 nodes relu activation function, bound to change\n",
86+
"model.add(tf.keras.layers.Flatten())\n",
87+
"model.add(tf.keras.layers.Dense(128,kernel_initializer='normal', activation=tf.nn.relu))\n",
88+
"model.add(tf.keras.layers.Dense(128,kernel_initializer='normal', activation=tf.nn.relu))\n",
89+
"model.add(tf.keras.layers.Dense(128,kernel_initializer='normal', activation=tf.nn.relu))\n",
90+
"#Using a single output with linear activation for Off Rtg or Def Rtg, definietly might change\n",
91+
"model.add(tf.keras.layers.Dense(1, kernel_initializer='normal', activation='linear'))\n",
92+
"#using adam optimizer, and MSE\n",
93+
"model.compile(optimizer='adam',loss='mean_squared_error', metrics=['accuracy'])\n",
94+
"#training model for 3 epochs, will increase for better accuracy\n",
95+
"history = model.fit(x_train,y_train,epochs=3)"
96+
]
97+
},
98+
{
99+
"cell_type": "code",
100+
"execution_count": 16,
101+
"metadata": {},
102+
"outputs": [
103+
{
104+
"name": "stdout",
105+
"output_type": "stream",
106+
"text": [
107+
"[3.0361745791001753, 0.1673881674150454]\n"
108+
]
109+
}
110+
],
111+
"source": [
112+
"# define an empty list\n",
113+
"x_test = []\n",
114+
"\n",
115+
"# open file and read the content in a list\n",
116+
"with open('listfile.txt', 'r') as filehandle:\n",
117+
" for line in filehandle:\n",
118+
" # remove linebreak which is the last character of the string\n",
119+
" currentPlace = line[:-1]\n",
120+
"\n",
121+
" # add item to the list\n",
122+
" x_test.append(currentPlace)\n",
123+
"# define an empty list\n",
124+
"y_test = []\n",
125+
"\n",
126+
"# open file and read the content in a list\n",
127+
"with open('listfile1.txt', 'r') as filehandle:\n",
128+
" for line in filehandle:\n",
129+
" # remove linebreak which is the last character of the string\n",
130+
" currentPlace = line[:-1]\n",
131+
"\n",
132+
" # add item to the list\n",
133+
" y_test.append(currentPlace)\n",
134+
" \n",
135+
"import ast\n",
136+
"temp1=[]\n",
137+
"for x in x_test:\n",
138+
" temp1.append(ast.literal_eval(x))\n",
139+
"x_test=temp1\n",
140+
"x_test = np.asarray(x_test)\n",
141+
"import ast\n",
142+
"temp2=[]\n",
143+
"for x in y_test:\n",
144+
" temp2.append(ast.literal_eval(x))\n",
145+
"y_test=temp2\n",
146+
"y_test = np.asarray(y_test)\n",
147+
"\n",
148+
"\n",
149+
"#validate model\n",
150+
"acc = model.evaluate(x_test,y_test,verbose=0)\n",
151+
"print(acc)"
152+
]
153+
},
154+
{
155+
"cell_type": "code",
156+
"execution_count": null,
157+
"metadata": {},
158+
"outputs": [],
159+
"source": []
160+
},
161+
{
162+
"cell_type": "code",
163+
"execution_count": null,
164+
"metadata": {},
165+
"outputs": [],
166+
"source": []
167+
}
168+
],
169+
"metadata": {
170+
"kernelspec": {
171+
"display_name": "Python 3",
172+
"language": "python",
173+
"name": "python3"
174+
},
175+
"language_info": {
176+
"codemirror_mode": {
177+
"name": "ipython",
178+
"version": 3
179+
},
180+
"file_extension": ".py",
181+
"mimetype": "text/x-python",
182+
"name": "python",
183+
"nbconvert_exporter": "python",
184+
"pygments_lexer": "ipython3",
185+
"version": "3.6.4"
186+
}
187+
},
188+
"nbformat": 4,
189+
"nbformat_minor": 2
190+
}

CSVM.py

+92
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,92 @@
1+
import numpy as np
2+
from numpy import linalg
3+
import cvxopt
4+
import cvxopt.solvers
5+
6+
7+
def linear_kernel(x1, x2):
8+
return np.dot(x1, x2)
9+
10+
11+
def polynomial_kernel(x, y, p=3):
12+
return (1 + np.dot(x, y)) ** p
13+
14+
15+
def gaussian_kernel(x, y, sigma=5.0):
16+
return np.exp(-linalg.norm(x - y) ** 2 / (2 * (sigma ** 2)))
17+
18+
19+
class SVM(object):
20+
def __init__(self, kernel=linear_kernel, C=None):
21+
self.kernel = kernel
22+
self.C = C
23+
if self.C is not None: self.C = float(self.C)
24+
25+
def fit(self, X, y):
26+
n_samples, n_features = X.shape
27+
28+
# Gram matrix
29+
K = np.zeros((n_samples, n_samples))
30+
for i in range(n_samples):
31+
for j in range(n_samples):
32+
K[i, j] = self.kernel(X[i], X[j])
33+
34+
P = cvxopt.matrix(np.outer(y, y) * K)
35+
q = cvxopt.matrix(np.ones(n_samples) * -1)
36+
A = cvxopt.matrix(y, (1, n_samples), 'd')
37+
b = cvxopt.matrix(0.0)
38+
39+
if self.C is None:
40+
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
41+
h = cvxopt.matrix(np.zeros(n_samples))
42+
else:
43+
tmp1 = np.diag(np.ones(n_samples) * -1)
44+
tmp2 = np.identity(n_samples)
45+
G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
46+
tmp1 = np.zeros(n_samples)
47+
tmp2 = np.ones(n_samples) * self.C
48+
h = cvxopt.matrix(np.hstack((tmp1, tmp2)))
49+
#A = A.astype(double)
50+
# solve QP problem
51+
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
52+
53+
# Lagrange multipliers
54+
a = np.ravel(solution['x'])
55+
56+
# Support vectors have non zero lagrange multipliers
57+
sv = a > 1e-5
58+
ind = np.arange(len(a))[sv]
59+
self.a = a[sv]
60+
self.sv = X[sv]
61+
self.sv_y = y[sv]
62+
print("%d support vectors out of %d points" % (len(self.a), n_samples))
63+
64+
# Intercept
65+
self.b = 0
66+
for n in range(len(self.a)):
67+
self.b += self.sv_y[n]
68+
self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])
69+
self.b /= len(self.a)
70+
71+
# Weight vector
72+
if self.kernel == linear_kernel:
73+
self.w = np.zeros(n_features)
74+
for n in range(len(self.a)):
75+
self.w += self.a[n] * self.sv_y[n] * self.sv[n]
76+
else:
77+
self.w = None
78+
79+
def project(self, X):
80+
if self.w is not None:
81+
return np.dot(X, self.w) + self.b
82+
else:
83+
y_predict = np.zeros(len(X))
84+
for i in range(len(X)):
85+
s = 0
86+
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
87+
s += a * sv_y * self.kernel(X[i], sv)
88+
y_predict[i] = s
89+
return y_predict + self.b
90+
91+
def predict(self, X):
92+
return np.sign(self.project(X))

CSVM.pyc

3.48 KB
Binary file not shown.

0 commit comments

Comments
 (0)