-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_exp3_singlelabel.py
109 lines (75 loc) · 2.47 KB
/
plot_exp3_singlelabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from sklearn import metrics
import sys
import math
def plot_data(dataset, results, metric):
#clear the file
f = open(r'./output/exp-3-graph/' + metric + '_' + dataset + '.data', 'w')
f.close()
f = open(r'./output/exp-3-graph/' + metric + '_' + dataset + '.data', 'a')
f.write(str(results))
f.close()
length = len(results[random.choice(results.keys())])
plt.figure()
plt.title(dataset)
plt.xlabel('Percentage of Known Truth (* 20% )')
plt.ylabel(metric)
plots = []
labels = []
mins = sys.maxint
maxs = -sys.maxint
for method in results:
tempmin = min(results[method])
tempmax = max(results[method])
mins = min(mins, tempmin)
maxs = max(maxs, tempmax)
mins = math.floor(mins*100)/100
maxs = math.ceil(maxs*100)/100
for method in results:
labels.append('_'.join(method.split('_')[1:]))
X = results[method]
plots.append(plt.plot(range(0, length, 1), X, label='_'.join(method.split('_')[1:])))
plt.axis([0, length + length/2 , mins , maxs])
plt.legend(loc ='lower right')
plt.savefig('./output/exp-3-graph/' + metric + '_' + dataset + '.png')
def get_datafile(datafile):
X = []
f = open(datafile,'r')
for line in f.xreadlines():
line = line.strip()
if not line:
continue
line = line.split('\t')
line_x = []
for item in line:
line_x.append(eval(item))
X.append(line_x)
f.close()
n_sample = len(X)
X = np.sum(X, axis=0) /n_sample
return X
def plot():
folder = r'./output/exp-3-graph'
if not os.path.isdir(folder):
os.mkdir(folder)
folder = r'./output/exp-3/singlelabel'
if not os.path.isdir(folder):
os.mkdir(folder)
datasets = os.listdir(folder)
for dataset in datasets:
if dataset[0] == '.':
continue
newfolder = folder + r'/' + dataset
methods = os.listdir(newfolder)
accuracy = {}
for method in methods:
if method[0] == '.':
continue
datafile = newfolder + r'/' + method
accuracy[method] = get_datafile(datafile)
plot_data(dataset, accuracy, 'Accuracy')
if __name__ == "__main__":
plot()