-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPyDTI.py
executable file
·185 lines (168 loc) · 8.11 KB
/
PyDTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/home/5/15D38037/.pyenv/versions/anaconda3-2.4.0/bin/python3.5
#
# Tomohiro Ban edited this script at January 9, 2018.
#
#==============================================================================
import os
import sys
import logging
import time
import getopt
import cv_eval
import ev_eval
from functions import *
from nrlmf import NRLMF
from nrlmfb import NRLMFb
from netlaprls import NetLapRLS
from blm import BLMNII
from wnngip import WNNGIP
#from kbmf import KBMF
from cmf import CMF
from new_pairs import novel_prediction_analysis
def main(argv):
try:
opts, args = getopt.getopt(argv, "m:d:f:c:e:s:o:n:p:g:q:r:l:w", ["method=","dataset=","data-dir=","cvs=","external=","specify-arg=","method-opt=","predict-num=","scoring=","gpmi=","params=","output-dir=","log=","workdir="])
except getopt.GetoptError:
sys.exit()
# data_dir = os.path.join(os.path.pardir, 'data')
# output_dir = os.path.join(os.path.pardir, 'output')
method = "nrlmf"
dataset = "nr"
data_dir = '.'
output_dir = '.'
cvs, sp_arg, model_settings, predict_num = 1, 1, [], 0
external = 0
scoring='auc'
gpmi = None
params = None
workdir = "./"
logfile = 'job.log'
seeds = [7771, 8367, 22, 1812, 4659]
# seeds = np.random.choice(10000, 5, replace=False)
for opt, arg in opts:
if opt == "--method":
method = arg
if opt == "--dataset":
dataset = arg
if opt == "--data-dir":
data_dir = arg
if opt == "--output-dir":
output_dir = arg
if opt == "--cvs":
cvs = int(arg)
if opt == "--external":
external = int(arg)
if opt == "--specify-arg":
sp_arg = int(arg)
if opt == "--method-opt":
model_settings = [s.split('=') for s in str(arg).split()]
if opt == "--predict-num":
predict_num = int(arg)
if opt == "--scoring":
scoring=str(arg)
if opt == "--gpmi":
gpmi = dict()
for s in str(arg).split():
key, val = s.split('=')
gpmi[key] = float(val)
if opt == "--params":
params = read_params(str(arg))
if opt == "--log":
logfile = str(arg)
if opt == "--workdir":
workdir = str(arg)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# set logger
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)
filename = logfile
fh = logging.FileHandler(workdir+"/"+filename)
fh.name = filename
logger.addHandler(fh)
# default parameters for each methods
if method == 'nrlmf':
args = {'c': 5, 'K1': 5, 'K2': 5, 'r': 50, 'lambda_d': 0.125, 'lambda_t': 0.125, 'alpha': 0.25, 'beta': 0.125, 'theta': 0.5, 'max_iter': 100}
if method == 'nrlmfb':
args = {'c': 5, 'K1': 5, 'K2': 5, 'r': 50, 'lambda_d': 0.125, 'lambda_t': 0.125, 'alpha': 0.25, 'beta': 0.125, 'theta': 0.5, 'max_iter': 100}
if method == 'netlaprls':
args = {'gamma_d': 10, 'gamma_t': 10, 'beta_d': 1e-5, 'beta_t': 1e-5}
if method == 'blmnii':
args = {'alpha': 0.7, 'gamma': 1.0, 'sigma': 1.0, 'avg': False}
if method == 'wnngip':
args = {'T': 0.8, 'sigma': 1.0, 'alpha': 0.8}
if method == 'kbmf':
args = {'R': 50}
if method == 'cmf':
args = {'K': 50, 'lambda_l': 0.5, 'lambda_d': 0.125, 'lambda_t': 0.125, 'max_iter': 30}
for key, val in model_settings:
args[key] = float(val)
intMat, drugMat, targetMat = load_data_from_file(dataset, os.path.join(data_dir, 'dataset'))
drug_names, target_names = get_drugs_targets_names(dataset, os.path.join(data_dir, 'dataset'))
if predict_num == 0:
if cvs == 1: # CV setting CVS1
X, D, T, cv = intMat, drugMat, targetMat, 1
if cvs == 2: # CV setting CVS2
X, D, T, cv = intMat, drugMat, targetMat, 0
if cvs == 3: # CV setting CVS3
X, D, T, cv = intMat.T, targetMat, drugMat, 0
cv_data = cross_validation(X, seeds, cv)
if cvs == 1: ev_data = external_validation(X, seeds, cv)
if sp_arg == 0 and predict_num == 0 and external == 0:
if method == 'nrlmf':
cv_eval.nrlmf_cv_eval(method,dataset,cv_data,X,D,T,cvs,args,logger,scoring=scoring,gpmi=gpmi,params=params)
if method == 'nrlmfb':
cv_eval.nrlmfb_cv_eval(method,dataset,cv_data,X,D,T,cvs,args,logger,scoring=scoring,gpmi=gpmi,params=params)
if method == 'netlaprls':
cv_eval.netlaprls_cv_eval(method, dataset, cv_data, X, D, T, cvs, args)
if method == 'blmnii':
cv_eval.blmnii_cv_eval(method, dataset, cv_data, X, D, T, cvs, args)
if method == 'wnngip':
cv_eval.wnngip_cv_eval(method, dataset, cv_data, X, D, T, cvs, args, logger)
if method == 'kbmf':
cv_eval.kbmf_cv_eval(method, dataset, cv_data, X, D, T, cvs, args)
if method == 'cmf':
cv_eval.cmf_cv_eval(method, dataset, cv_data, X, D, T, cvs, args)
if sp_arg == 0 and predict_num == 0 and external == 1:
if method == 'nrlmf':
ev_eval.nrlmf_ev_eval(method,ev_data,X,D,T,logger,scoring=scoring,gpmi=gpmi,params=params)
if method == 'nrlmfb':
ev_eval.nrlmfb_ev_eval(method,ev_data,X,D,T,logger,scoring=scoring,gpmi=gpmi,params=params)
if sp_arg == 1 or predict_num > 0:
if method == 'nrlmf':
model = NRLMF(cfix=args['c'], K1=args['K1'], K2=args['K2'], num_factors=args['r'], lambda_d=args['lambda_d'], lambda_t=args['lambda_t'], alpha=args['alpha'], beta=args['beta'], theta=args['theta'], max_iter=args['max_iter'])
if method == 'nrlmfb':
model = NRLMFb(cfix=args['c'], K1=args['K1'], K2=args['K2'], num_factors=args['r'], lambda_d=args['lambda_d'], lambda_t=args['lambda_t'], alpha=args['alpha'], beta=args['beta'], theta=args['theta'], max_iter=args['max_iter'], eta1=args['eta1'], eta2=args['eta2'])
if method == 'netlaprls':
model = NetLapRLS(gamma_d=args['gamma_d'], gamma_t=args['gamma_t'], beta_d=args['beta_t'], beta_t=args['beta_t'])
if method == 'blmnii':
model = BLMNII(alpha=args['alpha'], gamma=args['gamma'], sigma=args['sigma'], avg=args['avg'])
if method == 'wnngip':
model = WNNGIP(T=args['T'], sigma=args['sigma'], alpha=args['alpha'])
if method == 'kbmf':
model = KBMF(num_factors=args['R'])
if method == 'cmf':
model = CMF(K=args['K'], lambda_l=args['lambda_l'], lambda_d=args['lambda_d'], lambda_t=args['lambda_t'], max_iter=args['max_iter'])
cmd = str(model)
if predict_num == 0:
tic = time.time()
print("Dataset:"+dataset+" CVS:"+str(cvs)+"\n"+cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr:%.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.time()-tic))
# write_metric_vector_to_file(auc_vec, os.path.join(output_dir, method+"_auc_cvs"+str(cvs)+"_"+dataset+".txt"))
# write_metric_vector_to_file(aupr_vec, os.path.join(output_dir, method+"_aupr_cvs"+str(cvs)+"_"+dataset+".txt"))
logger.info(cmd+', '+"auc:%.6f, aupr:%.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.time()-tic))
elif predict_num > 0:
print("Dataset:"+dataset+"\n"+cmd)
seed = 7771 if method == 'cmf' else 22
model.fix_model(intMat, intMat, drugMat, targetMat, seed)
x, y = np.where(intMat == 0)
scores = model.predict_scores(zip(x, y), 5)
ii = np.argsort(scores)[::-1]
predict_pairs = [(drug_names[x[i]], target_names[y[i]], scores[i]) for i in ii[:predict_num]]
new_dti_file = os.path.join(output_dir, "_".join([method, dataset, "new_dti.txt"]))
novel_prediction_analysis(predict_pairs, new_dti_file, os.path.join(data_dir, 'biodb'))
if __name__ == "__main__":
main(sys.argv[1:])