-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcv_eval.py
executable file
·217 lines (197 loc) · 10.9 KB
/
cv_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import time
import logging
from functions import *
from nrlmf import NRLMF
from netlaprls import NetLapRLS
from blm import BLMNII
from wnngip import WNNGIP
#from kbmf import KBMF
from cmf import CMF
from sklearn.gaussian_process import GaussianProcessRegressor
def nrlmf_cv_eval(method,dataset,cv_data,intMat,Kd,Kt,cvs,para,logger,scoring='auc',gpmi=None):
# GP-MI (Bayesian optimization)
if gpmi is not None:
# Generate parameters
params_grid, x_grid = list(), list()
for r in [50, 100]:
for x in np.arange(-5, 2):
for y in np.arange(-5, 3):
for z in np.arange(-5, 1):
for t in np.arange(-3, 1):
params_grid.append({'cfix':para['c'],'K1':para['K1'],'K2':para['K2'],'num_factors':r,'lambda_d':2.**(x),'lambda_t':2.**(x),'alpha':2.**(y),'beta':2.**(z),'theta':2.**(t),'max_iter':100})
x_grid.append([para['c'],para['K1'],para['K2'],r,2.**(x),2.**(x),2.**(y),2.**(z),2.**(t),100])
# Initialization
start = time.time()
n_init = int(gpmi['n_init']) if gpmi['n_init'] > 0 else 1
best_score = 0
count = 1
if n_init > 0:
np.random.seed(list(cv_data.keys())[0])
i_init = np.random.permutation(range(len(params_grid)))[0:n_init]
X = np.array([x_grid[i] for i in i_init])
y = np.array(list())
for i in i_init:
tic = time.clock()
params_next = params_grid[i]
model = NRLMF(**params_next)
aupr_vec, auc_vec = train(model, cv_data, intMat, Kd, Kt)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
y_next = auc_avg if scoring=='auc' else aupr_avg
y = np.concatenate((y,[y_next]),axis=0)
logger.info("%s %s cvs=%s (sample= %s) %.6f[sec]" % (params_grid[i],scoring,str(cvs),str(count),time.clock()-tic))
logger.info(str(y_next))
if i == 0:
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
best_params, best_score = params_grid[i], y_next
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
if best_score < y_next:
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
best_params, best_score = params_grid[i], y_next
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
count += 1
# GP-MI algorithm
alpha = np.log(2/gpmi['delta'])
gamma = 0
for i in range(int(gpmi['max_iter'])):
tic = time.clock()
gp = GaussianProcessRegressor()
gp.fit(X,y)
mean, sig = gp.predict(x_grid,return_std=True)
phi = np.sqrt(alpha) * (np.sqrt(sig**2+gamma)-np.sqrt(gamma))
idx = np.argmax(mean+phi)
params_next = params_grid[idx]
x_next = x_grid[idx]
gamma = gamma + sig[idx]**2
model = NRLMF(**params_next)
aupr_vec, auc_vec = train(model, cv_data, intMat, Kd, Kt)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
y_next = auc_avg if scoring=='auc' else aupr_avg
logger.info("%s %s cvs=%s (sample= %s) %.6f[sec]" % (params_grid[i],scoring,str(cvs),str(i+n_init+1),time.clock()-tic))
logger.info(str(y_next))
if best_score < y_next:
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
best_params, best_score = params_next, y_next
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
if np.array_equal(x_next,X[-1]): break
X = np.concatenate((X,[x_next]),axis=0)
y = np.concatenate((y,[y_next]),axis=0)
end = time.time()
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, time:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4], end-start)
# Grid search
else:
start = time.clock()
max_auc, auc_opt = 0, []
for r in [50, 100]:
for x in np.arange(-5, 2):
for y in np.arange(-5, 3):
for z in np.arange(-5, 1):
for t in np.arange(-3, 1):
tic = time.clock()
model = NRLMF(cfix=para['c'], K1=para['K1'], K2=para['K2'], num_factors=r, lambda_d=2.**(x), lambda_t=2.**(x), alpha=2.**(y), beta=2.**(z), theta=2.**(t), max_iter=100)
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
logger.info(cmd)
aupr_vec, auc_vec = train(model, cv_data, intMat, Kd, Kt)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
logger.info("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if auc_avg > max_auc:
max_auc = auc_avg
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
end = time.clock()
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, time:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4], end-start)
logger.info('')
logger.info(cmd)
def netlaprls_cv_eval(method, dataset, cv_data, X, D, T, cvs, para):
max_auc, auc_opt = 0, []
for x in np.arange(-6, 3): # [-6, 2]
for y in np.arange(-6, 3): # [-6, 2]
tic = time.clock()
model = NetLapRLS(gamma_d=10**(x), gamma_t=10**(x), beta_d=10**(y), beta_t=10**(y))
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
print(cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if auc_avg > max_auc:
max_auc = auc_avg
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4])
print(cmd)
def blmnii_cv_eval(method, dataset, cv_data, X, D, T, cvs, para):
max_auc, auc_opt = 0, []
for x in np.arange(0, 1.1, 0.1):
tic = time.clock()
model = BLMNII(alpha=x, avg=False)
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
print(cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if auc_avg > max_auc:
max_auc = auc_avg
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4])
print(cmd)
def wnngip_cv_eval(method, dataset, cv_data, X, D, T, cvs, para):
max_auc, auc_opt = 0, []
for x in np.arange(0.1, 1.1, 0.1):
for y in np.arange(0.0, 1.1, 0.1):
tic = time.clock()
model = WNNGIP(T=x, sigma=1, alpha=y)
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
print(cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if auc_avg > max_auc:
max_auc = auc_avg
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4])
print(cmd)
def kbmf_cv_eval(method, dataset, cv_data, X, D, T, cvs, para):
max_auc, auc_opt = 0, []
for d in [50, 100]:
tic = time.clock()
model = KBMF(num_factors=d)
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
print(cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if auc_avg > max_auc:
max_auc = auc_avg
auc_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
cmd = "Optimal parameter setting:\n%s\n" % auc_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f\n" % (auc_opt[1], auc_opt[2], auc_opt[3], auc_opt[4])
print(cmd)
def cmf_cv_eval(method, dataset, cv_data, X, D, T, cvs, para):
max_aupr, aupr_opt = 0, []
for d in [50, 100]:
for x in np.arange(-2, -1):
for y in np.arange(-3, -2):
for z in np.arange(-3, -2):
tic = time.clock()
model = CMF(K=d, lambda_l=2.**(x), lambda_d=2.**(y), lambda_t=2.**(z), max_iter=30)
cmd = "Dataset:"+dataset+" CVS: "+str(cvs)+"\n"+str(model)
print(cmd)
aupr_vec, auc_vec = train(model, cv_data, X, D, T)
aupr_avg, aupr_conf = mean_confidence_interval(aupr_vec)
auc_avg, auc_conf = mean_confidence_interval(auc_vec)
print("auc:%.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f, Time:%.6f\n" % (auc_avg, aupr_avg, auc_conf, aupr_conf, time.clock()-tic))
if aupr_avg > max_aupr:
max_aupr = aupr_avg
aupr_opt = [cmd, auc_avg, aupr_avg, auc_conf, aupr_conf]
cmd = "Optimal parameter setting:\n%s\n" % aupr_opt[0]
cmd += "auc: %.6f, aupr: %.6f, auc_conf:%.6f, aupr_conf:%.6f\n" % (aupr_opt[1], aupr_opt[2], aupr_opt[3], aupr_opt[4])
print(cmd)