forked from mirekmat/supercritical-hydrogen-generation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExcel_NIST.m
221 lines (185 loc) · 6.81 KB
/
Excel_NIST.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
%Script that utilizes excel files to obtain thermodynamic and fluid dynamic
%data for further calculations. Initializes variables that will be used by
%other functions.
%% Import data from spreadsheet
%%
%% IMPORTING CONDENSED WATER DATA
WATER = zeros(404,14);
for i = 5:200
j = i*5;
%% Import the data
[~, ~, raw] = xlsread('C:\Users\Matthew\Documents\Supercritical Water\Thermodynamics\Water.xlsx',int2str(j),'A2:N405');
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''};
%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells
%% Create output variable
Super = reshape([raw{:}],size(raw));
%% Clear temporary variables
clearvars raw R;
WATER(:,:,i-4) = Super;
end
%%
%%IMPORTING HYDROGEN DATA
HYDROGEN = zeros(404,14);
for i = 5:200
j = i*5;
%% Import the data
[~, ~, raw] = xlsread('C:\Users\Matthew\Documents\Supercritical Water\Thermodynamics\Hydrogen.xlsx',int2str(j),'A2:N405');
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''};
%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells
%% Create output variable
Super = reshape([raw{:}],size(raw));
%% Clear temporary variables
clearvars raw R;
HYDROGEN(:,:,i-4) = Super;
end
%%
%%IMPORTING OXYGEN DATA
OXYGEN = zeros(404,14);
for i = 5:200
j = i*5;
%% Import the data
[~, ~, raw] = xlsread('C:\Users\Matthew\Documents\Supercritical Water\Thermodynamics\Oxygen.xlsx',int2str(j),'A2:N405');
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''};
%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells
%% Create output variable
Super = reshape([raw{:}],size(raw));
%% Clear temporary variables
clearvars raw R;
OXYGEN(:,:,i-4) = Super;
end
%%
%%Manipulations Water Graphing
W_TEMP = squeeze(WATER(:,1,:)) + 273.15; %Temperature (Kelvin )
W_DENSITY = squeeze(WATER(:,3,:)); %Density (mol/l)
W_VOLUME = squeeze(WATER(:,4,:)); %Volume (l/mol)
W_INTERNAL_ENERGY = squeeze(WATER(:,5,:));%Internal Energy (kJ/mol)
W_ENTHALPY = squeeze(WATER(:,6,:)); %Enthalpy (kJ/mol)
W_ENTROPY = squeeze(WATER(:,7,:)); %Entropy (J/mol*K)
W_CV = squeeze(WATER(:,8,:)); %Cv (J/mol*K)
W_CP = squeeze(WATER(:,9,:)); %Cp (J/mol*K)
W_SOUND_SPD = squeeze(WATER(:,10,:)); %Sound Spd. (m/s)
W_JOULE_THOMPSON = squeeze(WATER(:,11,:)); %Joule-Thomson (K/MPa)
W_VISCOSITY = squeeze(WATER(:,12,:)); %Viscosity (Pa*s)
W_THERMAL_CONDUCTIVITY = squeeze(WATER(:,13,:)); %Therm. Cond. (W/m*K)
W_PHASE = squeeze(WATER(:,14,:));%Phase
%%
%%Isolating Supercrtical Region
W_TEMP(1:25,:)=[];
W_DENSITY(1:25,:) = [];
W_VOLUME(1:25,:) = [];
W_INTERNAL_ENERGY(1:25,:) = [];
W_ENTHALPY(1:25,:) = [];
W_ENTROPY(1:25,:) = [];
W_CV(1:25,:) = [];
W_CP(1:25,:) = [];
W_SOUND_SPD(1:25,:) = [];
W_JOULE_THOMPSON(1:25,:) = [];
W_VISCOSITY(1:25,:) = [];
W_THERMAL_CONDUCTIVITY(1:25,:) = [];
W_PHASE(1:25,:) = [];
W_TEMP(379,:)=[];
W_DENSITY(379,:) = [];
W_VOLUME(379,:) = [];
W_INTERNAL_ENERGY(379,:) = [];
W_ENTHALPY(379,:) = [];
W_ENTROPY(379,:) = [];
W_CV(379,:) = [];
W_CP(379,:) = [];
W_SOUND_SPD(379,:) = [];
W_JOULE_THOMPSON(379,:) = [];
W_VISCOSITY(379,:) = [];
W_THERMAL_CONDUCTIVITY(379,:) = [];
W_PHASE(379,:) = [];
%%
%%Manipulations Hydrogen Graphing
H_DENSITY = squeeze(HYDROGEN(:,3,:)); %Density (mol/l)
H_VOLUME = squeeze(HYDROGEN(:,4,:)); %Volume (l/mol)
H_INTERNAL_ENERGY = squeeze(HYDROGEN(:,5,:));%Internal Energy (kJ/mol)
H_ENTHALPY = squeeze(HYDROGEN(:,6,:)); %Enthalpy (kJ/mol)
H_ENTROPY = squeeze(HYDROGEN(:,7,:)); %Entropy (J/mol*K)
H_CV = squeeze(HYDROGEN(:,8,:)); %Cv (J/mol*K)
H_CP = squeeze(HYDROGEN(:,9,:)); %Cp (J/mol*K)
H_SOUND_SPD = squeeze(HYDROGEN(:,10,:)); %Sound Spd. (m/s)
H_JOULE_THOMPSON = squeeze(HYDROGEN(:,11,:)); %Joule-Thomson (K/MPa)
H_VISCOSITY = squeeze(HYDROGEN(:,12,:)); %Viscosity (Pa*s)
H_THERMAL_CONDUCTIVITY = squeeze(HYDROGEN(:,13,:)); %Therm. Cond. (W/m*K)
H_PHASE = squeeze(HYDROGEN(:,14,:));%Phase
%%
%%Isolating Supercrtical Region
H_DENSITY(1:25,:) = [];
H_VOLUME(1:25,:) = [];
H_INTERNAL_ENERGY(1:25,:) = [];
H_ENTHALPY(1:25,:) = [];
H_ENTROPY(1:25,:) = [];
H_CV(1:25,:) = [];
H_CP(1:25,:) = [];
H_SOUND_SPD(1:25,:) = [];
H_JOULE_THOMPSON(1:25,:) = [];
H_VISCOSITY(1:25,:) = [];
H_THERMAL_CONDUCTIVITY(1:25,:) = [];
H_PHASE(1:25,:) = [];
H_DENSITY(379,:) = [];
H_VOLUME(379,:) = [];
H_INTERNAL_ENERGY(379,:) = [];
H_ENTHALPY(379,:) = [];
H_ENTROPY(379,:) = [];
H_CV(379,:) = [];
H_CP(379,:) = [];
H_SOUND_SPD(379,:) = [];
H_JOULE_THOMPSON(379,:) = [];
H_VISCOSITY(379,:) = [];
H_THERMAL_CONDUCTIVITY(379,:) = [];
H_PHASE(379,:) = [];
%%
%%Manipulations Oxygen Graphing
O_DENSITY = squeeze(OXYGEN(:,3,:)); %Density (mol/l)
O_VOLUME = squeeze(OXYGEN(:,4,:)); %Volume (l/mol)
O_INTERNAL_ENERGY = squeeze(OXYGEN(:,5,:));%Internal Energy (kJ/mol)
O_ENTHALPY = squeeze(OXYGEN(:,6,:)); %Enthalpy (kJ/mol)
O_ENTROPY = squeeze(OXYGEN(:,7,:)); %Entropy (J/mol*K)
O_CV = squeeze(OXYGEN(:,8,:)); %Cv (J/mol*K)
O_CP = squeeze(OXYGEN(:,9,:)); %Cp (J/mol*K)
O_SOUND_SPD = squeeze(OXYGEN(:,10,:)); %Sound Spd. (m/s)
O_JOULE_THOMPSON = squeeze(OXYGEN(:,11,:)); %Joule-Thomson (K/MPa)
O_VISCOSITY = squeeze(OXYGEN(:,12,:)); %Viscosity (Pa*s)
O_THERMAL_CONDUCTIVITY = squeeze(OXYGEN(:,13,:)); %Therm. Cond. (W/m*K)
O_PHASE = squeeze(OXYGEN(:,14,:));%Phase
%%
%%Isolating Supercrtical Region
O_DENSITY(1:25,:) = [];
O_VOLUME(1:25,:) = [];
O_INTERNAL_ENERGY(1:25,:) = [];
O_ENTHALPY(1:25,:) = [];
O_ENTROPY(1:25,:) = [];
O_CV(1:25,:) = [];
O_CP(1:25,:) = [];
O_SOUND_SPD(1:25,:) = [];
O_JOULE_THOMPSON(1:25,:) = [];
O_VISCOSITY(1:25,:) = [];
O_THERMAL_CONDUCTIVITY(1:25,:) = [];
O_PHASE(1:25,:) = [];
O_DENSITY(379,:) = [];
O_VOLUME(379,:) = [];
O_INTERNAL_ENERGY(379,:) = [];
O_ENTHALPY(379,:) = [];
O_ENTROPY(379,:) = [];
O_CV(379,:) = [];
O_CP(379,:) = [];
O_SOUND_SPD(379,:) = [];
O_JOULE_THOMPSON(379,:) = [];
O_VISCOSITY(379,:) = [];
O_THERMAL_CONDUCTIVITY(379,:) = [];
O_PHASE(379,:) = [];
%%
%Extend H_density using cubic spline function
H_DENSITY(H_DENSITY==0) = NaN;
F = fillmissing(H_DENSITY,'pchip',2,'EndValues','extrap');
H_DENSITY = fillmissing(F,'pchip',1,'EndValues','extrap');
%importfile(H_GIBBS.mat);
%importfile(O_GIBBS.mat);