diff --git a/src/lib/models/decode.py b/src/lib/models/decode.py index 170b216..75baa3d 100644 --- a/src/lib/models/decode.py +++ b/src/lib/models/decode.py @@ -118,11 +118,11 @@ def _topk(scores, K=40): topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K) topk_inds = topk_inds % (height * width) - topk_ys = (topk_inds / width).int().float() + topk_ys = (topk_inds // width).int().float() topk_xs = (topk_inds % width).int().float() topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K) - topk_clses = (topk_ind / K).int() + topk_clses = (topk_ind // K).int() topk_inds = _gather_feat( topk_inds.view(batch, -1, 1), topk_ind).view(batch, K) topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K) diff --git a/src/lib/models/losses.py b/src/lib/models/losses.py index 95cdbcc..774a585 100644 --- a/src/lib/models/losses.py +++ b/src/lib/models/losses.py @@ -176,7 +176,7 @@ def forward(self, seg_feat, conv_weight, mask, ind, target): batch_size = seg_feat.size(0) weight = _transpose_and_gather_feat(conv_weight, ind) h, w = seg_feat.size(-2), seg_feat.size(-1) - x, y = ind % w, ind/w + x, y = ind % w, ind//w x_range = torch.arange(w).float().to(device=seg_feat.device) y_range = torch.arange(h).float().to(device=seg_feat.device) y_grid, x_grid = torch.meshgrid([y_range, x_range])