-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
191 lines (139 loc) · 5.32 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Tell Google Colaboratoy what version we want to use
%tensorflow_version 1.x
# First we need to import a few libraries which
# help us to do the actual math and machine learning parts
import sys
import matplotlib.pyplot as plt
import numpy as np
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
# --------------------------------------------------
# Load the dataset:
# MNIST database of handwritten digits. 60,000 28x28 grayscale images of the
# 10 digits, along with a test set of 10,000 images.
(X_train_raw, _), (_, _) = mnist.load_data()
img_rows = 28
img_cols = 28
channels = 1
img_shape = (img_rows, img_cols, channels)
# Lets see what is inside!
X_train_raw[0]
# --------------------------------------------------
# This part is just for fun!
# We replace all numbers from 1-255 with 1 and print them out.
# With this trick we can actually make the image "visible" as text.
# Pick an index out of the 60000 entries
dataset_index = 512
# Print what is inside ..
for x in range(0, img_cols):
for y in range(0, img_rows):
char = '0' if X_train_raw[dataset_index][x][y] == 0 else '1'
print(char, end = '')
print() # .. newline
# --------------------------------------------------
latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# --------------------------------------------------
# Build and compile the discriminator
dis_model = Sequential()
dis_model.add(Flatten(input_shape=img_shape))
dis_model.add(Dense(512))
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(Dense(256))
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(Dense(1, activation='sigmoid'))
dis_model.summary()
dis_img = Input(shape=img_shape)
validity = dis_model(dis_img)
discriminator = Model(dis_img, validity)
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# --------------------------------------------------
# Build the generator
gen_model = Sequential()
gen_model.add(Dense(256, input_dim=latent_dim))
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(BatchNormalization(momentum=0.8))
gen_model.add(Dense(512))
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(BatchNormalization(momentum=0.8))
gen_model.add(Dense(1024))
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(BatchNormalization(momentum=0.8))
gen_model.add(Dense(np.prod(img_shape), activation='tanh'))
gen_model.add(Reshape(img_shape))
gen_model.summary()
gen_noise = Input(shape=(latent_dim,))
gen_img = gen_model(gen_noise)
generator = Model(gen_noise, gen_img)
# The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)
# --------------------------------------------------
# The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)
# For the combined model we will only train the generator
discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
validity = discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
combined = Model(z, validity)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)
combined.summary()
# --------------------------------------------------
epochs=30000
batch_size=32
# --------------------------------------------------
# Rescale -1 to 1
X_train_scaled = X_train_raw / 127.5 - 1.
X_train = np.expand_dims(X_train_scaled, axis=3)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
# --------------------------------------------------
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
gen_noise = np.random.normal(0, 1, (batch_size, latent_dim))
# Generate a batch of new images
gen_imgs = generator.predict(gen_noise)
# Train the discriminator
d_loss_real = discriminator.train_on_batch(imgs, valid)
d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, latent_dim))
# Train the generator (to have the discriminator label samples as valid)
g_loss = combined.train_on_batch(noise, valid)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# --------------------------------------------------
# Print samples of what the generator gives us
r, c = 5, 5
img_noise = np.random.normal(0, 1, (r * c, latent_dim))
pred_gen_imgs = generator.predict(img_noise)
# Rescale images 0 - 1
pred_gen_imgs = 0.5 * pred_gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(pred_gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
plt.show()
plt.close()