-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfenwick2d.cpp
130 lines (108 loc) · 1.59 KB
/
fenwick2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*range update range query in 2d matrix*/
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
ll n,m;
ll bit2d1[504][504],bit2d2[504][504],arr[504][504];
void moveup(ll ftree[],ll k,ll v);
ll movedown(ll ftree[],ll k);
ll query(ll f,ll p)
{
return f*movedown(bit2d1[p],f) - movedown(bit2d2[p],f);
}
ll range_query(ll g,ll h,ll p)
{
return query(h,p)-query(g-1,p);
}
void range_update(ll g,ll h,ll v,ll p)
{
moveup(bit2d1[p],g,v);
moveup(bit2d1[p],h+1,-v);
moveup(bit2d2[p],g,v*(g-1));
moveup(bit2d2[p],h+1,-v*h);
}
int main()
{
ll i,j;
ll k,x1,x2,y1,y2,v,ans;
scanf("%lld%lld",&n,&m);
for(i=0;i<=n;i++)
{
for(j=0;j<=m;j++)
{
bit2d1[i][j]=0;bit2d2[i][j]=0;
}
}
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
scanf("%lld",&arr[i][j]);
range_update(j,j,arr[i][j],i);
}
}
/*
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
printf("%lld ",bit2d1[i][j]);
}
printf("\n");
}
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
printf("%lld ",bit2d2[i][j]);
}
printf("\n");
}
*/
//memset(bit2d1[i], 0, (m+1) * sizeof(long long));
//memset(Bit2d2[i], 0, (m+1) * sizeof(long long));
ll q;
scanf("%lld",&q);
while(q--)
{
scanf("%lld",&k);
if(k==1)
{
scanf("%lld%lld%lld%lld%lld",&x1,&y1,&x2,&y2,&v);
for(i=x1;i<=x2;i++)
{
range_update(y1,y2,v,i);
}
}
else
{ans=0;
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
for(i=x1;i<=x2;i++)
{
ans=ans+range_query(y1,y2,i);
}
printf("%lld\n",ans);
}
}
return 0;
}
void moveup(ll ftree[],ll k,ll v)
{
while(k<=m)
{
ftree[k]=ftree[k]+v;
k=k+(k&(-k));
}
}
ll movedown(ll ftree[],ll k)
{
ll sum=0;
while(k>0)
{
sum=sum+ftree[k];
//printf("%lld %lld\n",sum,k);
k=k-(k&(-k));
}
return sum;
}