1
- .. _header-n0 :
1
+ .. _header-n293 :
2
2
3
3
Release History
4
4
===============
5
5
6
- .. _header-n2 :
6
+ .. _header-n295 :
7
7
8
8
PyGAD 1.0.17
9
9
------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
15
15
values for the solutions. This allows the project to be customized to
16
16
any problem by building the right fitness function.
17
17
18
- .. _header-n7 :
18
+ .. _header-n300 :
19
19
20
20
PyGAD 1.0.20
21
21
-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
35
35
4. The code object ``__code__ `` of the passed fitness function is
36
36
checked to ensure it has the right number of parameters.
37
37
38
- .. _header-n18 :
38
+ .. _header-n311 :
39
39
40
40
PyGAD 2.0.0
41
41
------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
61
61
is called after each generation. This helps the user to do
62
62
post-processing or debugging operations after each generation.
63
63
64
- .. _header-n29 :
64
+ .. _header-n322 :
65
65
66
66
PyGAD 2.1.0
67
67
-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
97
97
98
98
2. Mutation is applied independently for the genes.
99
99
100
- .. _header-n44 :
100
+ .. _header-n337 :
101
101
102
102
PyGAD 2.2.1
103
103
-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
107
107
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108
108
training neural networks with the genetic algorithm.
109
109
110
- .. _header-n49 :
110
+ .. _header-n342 :
111
111
112
112
PyGAD 2.2.2
113
113
-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141
141
``crossover_type `` parameters of the pygad.GA class constructor. When
142
142
``None ``, this means the step is bypassed and has no action.
143
143
144
- .. _header-n62 :
144
+ .. _header-n355 :
145
145
146
146
PyGAD 2.3.0
147
147
-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
166
166
6. The name of the ``pygad.nn.train_network() `` function is changed to
167
167
``pygad.nn.train() ``.
168
168
169
- .. _header-n77 :
169
+ .. _header-n370 :
170
170
171
171
PyGAD 2.4.0
172
172
-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204
204
if ga_instance.best_solution()[1 ] >= 70 :
205
205
return " stop"
206
206
207
- .. _header-n87 :
207
+ .. _header-n380 :
208
208
209
209
PyGAD 2.5.0
210
210
-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300
300
randomly based on the ``gene_space `` parameter. Moreover, the mutation
301
301
is applied based on this parameter.
302
302
303
- .. _header-n115 :
303
+ .. _header-n408 :
304
304
305
305
PyGAD 2.6.0
306
306
------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318
318
``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319
319
``on_generation ``, and ``on_stop ``.
320
320
321
- .. _header-n124 :
321
+ .. _header-n417 :
322
322
323
323
PyGAD 2.7.0
324
324
-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377
377
case, the activation function of the last layer can be set to any type
378
378
(e.g. softmax).
379
379
380
- .. _header-n284 :
380
+ .. _header-n441 :
381
381
382
382
PyGAD 2.7.1
383
383
-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
387
387
1. A bug fix when the ``problem_type `` argument is set to
388
388
``regression ``.
389
389
390
- .. _header-n289 :
390
+ .. _header-n446 :
391
391
392
392
PyGAD 2.7.2
393
393
-----------
@@ -397,7 +397,17 @@ Release Date: 14 September 2020
397
397
1. Bug fix to support building and training regression neural networks
398
398
with multiple outputs.
399
399
400
- .. _header-n283 :
400
+ .. _header-n451 :
401
+
402
+ PyGAD 2.8.0
403
+ -----------
404
+
405
+ Release Date: 20 September 2020
406
+
407
+ 1. Support of a new module named ``kerasga `` so that the Keras models
408
+ can be trained by the genetic algorithm using PyGAD.
409
+
410
+ .. _header-n586 :
401
411
402
412
PyGAD Projects at GitHub
403
413
========================
@@ -407,7 +417,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
407
417
open-source GitHub projects. A brief note about these projects is given
408
418
in the next subsections.
409
419
410
- .. _header-n150 :
420
+ .. _header-n453 :
411
421
412
422
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
413
423
--------------------------------------------------------------------------------
@@ -418,7 +428,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
418
428
is the first project which is an open-source Python 3 project for
419
429
implementing the genetic algorithm based on NumPy.
420
430
421
- .. _header-n153 :
431
+ .. _header-n456 :
422
432
423
433
`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
424
434
----------------------------------------------------
@@ -432,7 +442,7 @@ neural network without using a training algorithm. Currently, it only
432
442
supports classification and later regression will be also supported.
433
443
Moreover, only one class is supported per sample.
434
444
435
- .. _header-n156 :
445
+ .. _header-n459 :
436
446
437
447
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
438
448
--------------------------------------------------------------
@@ -445,7 +455,7 @@ projects
445
455
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
446
456
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
447
457
448
- .. _header-n159 :
458
+ .. _header-n462 :
449
459
450
460
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
451
461
----------------------------------------------------
@@ -457,7 +467,7 @@ convolutional neural networks using NumPy. The purpose of this project
457
467
is to only implement the **forward pass ** of a convolutional neural
458
468
network without using a training algorithm.
459
469
460
- .. _header-n162 :
470
+ .. _header-n465 :
461
471
462
472
`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
463
473
--------------------------------------------------------
@@ -469,7 +479,7 @@ convolutional neural networks using the genetic algorithm. It uses the
469
479
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
470
480
project for building the genetic algorithm.
471
481
472
- .. _header-n165 :
482
+ .. _header-n468 :
473
483
474
484
Submitting Issues
475
485
=================
@@ -486,7 +496,7 @@ is not working properly or to ask for questions.
486
496
If this is not a proper option for you, then check the **Contact Us **
487
497
section for more contact details.
488
498
489
- .. _header-n169 :
499
+ .. _header-n472 :
490
500
491
501
Ask for Feature
492
502
===============
503
513
504
514
Also check the **Contact Us ** section for more contact details.
505
515
506
- .. _header-n173 :
516
+ .. _header-n476 :
507
517
508
518
Projects Built using PyGAD
509
519
==========================
@@ -522,15 +532,15 @@ Within your message, please send the following details:
522
532
523
533
- Preferably, a link that directs the readers to your project
524
534
525
- .. _header-n184 :
535
+ .. _header-n487 :
526
536
527
537
For More Information
528
538
====================
529
539
530
540
There are different resources that can be used to get started with the
531
541
genetic algorithm and building it in Python.
532
542
533
- .. _header-n186 :
543
+ .. _header-n489 :
534
544
535
545
Tutorial: Implementing Genetic Algorithm in Python
536
546
--------------------------------------------------
@@ -554,7 +564,7 @@ good resource to start with coding the genetic algorithm.
554
564
555
565
|image0 |
556
566
557
- .. _header-n197 :
567
+ .. _header-n500 :
558
568
559
569
Tutorial: Introduction to Genetic Algorithm
560
570
-------------------------------------------
@@ -573,7 +583,7 @@ which is available at these links:
573
583
574
584
|image1 |
575
585
576
- .. _header-n207 :
586
+ .. _header-n510 :
577
587
578
588
Tutorial: Build Neural Networks in Python
579
589
-----------------------------------------
@@ -593,7 +603,7 @@ available at these links:
593
603
594
604
|image2 |
595
605
596
- .. _header-n217 :
606
+ .. _header-n520 :
597
607
598
608
Tutorial: Optimize Neural Networks with Genetic Algorithm
599
609
---------------------------------------------------------
@@ -613,7 +623,7 @@ available at these links:
613
623
614
624
|image3 |
615
625
616
- .. _header-n227 :
626
+ .. _header-n530 :
617
627
618
628
Tutorial: Building CNN in Python
619
629
--------------------------------
@@ -639,7 +649,7 @@ good resource to start with coding CNNs.
639
649
640
650
|image4 |
641
651
642
- .. _header-n240 :
652
+ .. _header-n543 :
643
653
644
654
Tutorial: Derivation of CNN from FCNN
645
655
-------------------------------------
@@ -658,7 +668,7 @@ which is available at these links:
658
668
659
669
|image5 |
660
670
661
- .. _header-n250 :
671
+ .. _header-n553 :
662
672
663
673
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
664
674
--------------------------------------------------------------------------
@@ -684,7 +694,7 @@ Find the book at these links:
684
694
.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
685
695
:alt:
686
696
687
- .. _header-n265 :
697
+ .. _header-n568 :
688
698
689
699
Contact Us
690
700
==========
0 commit comments