@@ -231,6 +231,41 @@ Additions to existing modules
231
231
inverseʳ-uniqueᴹ : x +ᴹ y ≈ 0ᴹ → y ≈ -ᴹ x
232
232
```
233
233
234
+ * Added new functions and proofs to ` Algebra.Construct.Flip.Op ` :
235
+ ``` agda
236
+ zero : Zero ≈ ε ∙ → Zero ≈ ε (flip ∙)
237
+ distributes : (≈ DistributesOver ∙) + → (≈ DistributesOver (flip ∙)) +
238
+ isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# →
239
+ IsSemiringWithoutAnnihilatingZero + (flip *) 0# 1#
240
+ isSemiring : IsSemiring + * 0# 1# → IsSemiring + (flip *) 0# 1#
241
+ isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# →
242
+ IsCommutativeSemiring + (flip *) 0# 1#
243
+ isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring + * 0# 1# →
244
+ IsCancellativeCommutativeSemiring + (flip *) 0# 1#
245
+ isIdempotentSemiring : IsIdempotentSemiring + * 0# 1# →
246
+ IsIdempotentSemiring + (flip *) 0# 1#
247
+ isQuasiring : IsQuasiring + * 0# 1# → IsQuasiring + (flip *) 0# 1#
248
+ isRingWithoutOne : IsRingWithoutOne + * - 0# → IsRingWithoutOne + (flip *) - 0#
249
+ isNonAssociativeRing : IsNonAssociativeRing + * - 0# 1# →
250
+ IsNonAssociativeRing + (flip *) - 0# 1#
251
+ isRing : IsRing ≈ + * - 0# 1# → IsRing ≈ + (flip *) - 0# 1#
252
+ isNearring : IsNearring + * 0# 1# - → IsNearring + (flip *) 0# 1# -
253
+ isCommutativeRing : IsCommutativeRing + * - 0# 1# →
254
+ IsCommutativeRing + (flip *) - 0# 1#
255
+ semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ →
256
+ SemiringWithoutAnnihilatingZero a ℓ
257
+ commutativeSemiring : CommutativeSemiring a ℓ → CommutativeSemiring a ℓ
258
+ cancellativeCommutativeSemiring : CancellativeCommutativeSemiring a ℓ →
259
+ CancellativeCommutativeSemiring a ℓ
260
+ idempotentSemiring : IdempotentSemiring a ℓ → IdempotentSemiring a ℓ
261
+ quasiring : Quasiring a ℓ → Quasiring a ℓ
262
+ ringWithoutOne : RingWithoutOne a ℓ → RingWithoutOne a ℓ
263
+ nonAssociativeRing : NonAssociativeRing a ℓ → NonAssociativeRing a ℓ
264
+ nearring : Nearring a ℓ → Nearring a ℓ
265
+ ring : Ring a ℓ → Ring a ℓ
266
+ commutativeRing : CommutativeRing a ℓ → CommutativeRing a ℓ
267
+ ```
268
+
234
269
* In ` Algebra.Properties.Magma.Divisibility ` :
235
270
``` agda
236
271
∣ˡ-respʳ-≈ : _∣ˡ_ Respectsʳ _≈_
@@ -333,7 +368,12 @@ Additions to existing modules
333
368
```
334
369
335
370
* In ` Data.Fin.Properties ` :
371
+
336
372
``` agda
373
+ punchIn-mono-≤ : ∀ i (j k : Fin n) → j ≤ k → punchIn i j ≤ punchIn i k
374
+ punchIn-cancel-≤ : ∀ i (j k : Fin n) → punchIn i j ≤ punchIn i k → j ≤ k
375
+ punchOut-mono-≤ : (i≢j : i ≢ j) (i≢k : i ≢ k) → j ≤ k → punchOut i≢j ≤ punchOut i≢k
376
+ punchOut-cancel-≤ : (i≢j : i ≢ j) (i≢k : i ≢ k) → punchOut i≢j ≤ punchOut i≢k → j ≤ k
337
377
cast-involutive : .(eq₁ : m ≡ n) .(eq₂ : n ≡ m) → ∀ k → cast eq₁ (cast eq₂ k) ≡ k
338
378
inject!-injective : Injective _≡_ _≡_ inject!
339
379
inject!-< : (k : Fin′ i) → inject! k < i
@@ -480,6 +520,16 @@ Additions to existing modules
480
520
HomoProduct n A = HomoProduct′ n (const A)
481
521
```
482
522
523
+ * In ` Data.Sum.Relation.Binary.LeftOrder ` :
524
+ ``` agda
525
+ ⊎-<-wellFounded : WellFounded ∼₁ → WellFounded ∼₂ → WellFounded (∼₁ ⊎-< ∼₂)
526
+ ```
527
+
528
+ * in ` Data.Sum.Relation.Binary.Pointwise ` :
529
+ ``` agda
530
+ ⊎-wellFounded : WellFounded ≈₁ → WellFounded ≈₂ → WellFounded (Pointwise ≈₁ ≈₂)
531
+ ```
532
+
483
533
* In ` Data.Vec.Properties ` :
484
534
``` agda
485
535
toList-injective : .(m=n : m ≡ n) → (xs : Vec A m) (ys : Vec A n) → toList xs ≡ toList ys → xs ≈[ m=n ] ys
0 commit comments