|
10 | 10 | open import Algebra.Lattice.Bundles |
11 | 11 | open import Relation.Binary |
12 | 12 | open import Function.Base |
13 | | -open import Function.Equality using (_⟨$⟩_) |
14 | | -open import Function.Equivalence using (_⇔_; module Equivalence) |
| 13 | +open import Function.Bundles using (module Equivalence; _⇔_) |
15 | 14 | open import Data.Product using (_,_; swap) |
16 | 15 |
|
17 | 16 | module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where |
@@ -39,18 +38,18 @@ replace-equality : {_≈′_ : Rel Carrier l₂} → |
39 | 38 | replace-equality {_≈′_} ≈⇔≈′ = record |
40 | 39 | { isLattice = record |
41 | 40 | { isEquivalence = record |
42 | | - { refl = to ⟨$⟩ refl |
43 | | - ; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y) |
44 | | - ; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z) |
| 41 | + { refl = to refl |
| 42 | + ; sym = λ x≈y → to (sym (from x≈y)) |
| 43 | + ; trans = λ x≈y y≈z → to (trans (from x≈y) (from y≈z)) |
45 | 44 | } |
46 | | - ; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y |
47 | | - ; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z |
48 | | - ; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) |
49 | | - ; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y |
50 | | - ; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z |
51 | | - ; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) |
52 | | - ; absorptive = (λ x y → to ⟨$⟩ ∨-absorbs-∧ x y) |
53 | | - , (λ x y → to ⟨$⟩ ∧-absorbs-∨ x y) |
| 45 | + ; ∨-comm = λ x y → to (∨-comm x y) |
| 46 | + ; ∨-assoc = λ x y z → to (∨-assoc x y z) |
| 47 | + ; ∨-cong = λ x≈y u≈v → to (∨-cong (from x≈y) (from u≈v)) |
| 48 | + ; ∧-comm = λ x y → to (∧-comm x y) |
| 49 | + ; ∧-assoc = λ x y z → to (∧-assoc x y z) |
| 50 | + ; ∧-cong = λ x≈y u≈v → to (∧-cong (from x≈y) (from u≈v)) |
| 51 | + ; absorptive = (λ x y → to (∨-absorbs-∧ x y)) |
| 52 | + , (λ x y → to (∧-absorbs-∨ x y)) |
54 | 53 | } |
55 | 54 | } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) |
56 | 55 | {-# WARNING_ON_USAGE replace-equality |
|
0 commit comments