Skip to content

Commit 0d628c1

Browse files
authored
Merge pull request #19 from adipandas/devel
Update readme
2 parents c60bb59 + 30842ce commit 0d628c1

File tree

1 file changed

+10
-6
lines changed

1 file changed

+10
-6
lines changed

README.md

Lines changed: 10 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -49,24 +49,25 @@ For using the opencv `dnn`-based object detection modules provided in this repos
4949

5050
## How to use?: Examples
5151

52-
Please refer [examples](https://github.com/adipandas/multi-object-tracker/tree/master/examples) folder of this repository.
53-
You can clone and run the examples as shown [here](examples/readme.md).
54-
55-
The interface for each tracker is simple and similar.
52+
The interface for each tracker is simple and similar. Please refer the example template below.
5653

5754
```
58-
from mottrackers import CentroidTracker # IOUTracker, CentroidKF_Tracker, SORT
55+
from motrackers import CentroidTracker # or IOUTracker, CentroidKF_Tracker, SORT
5956
6057
input_data = ...
6158
detector = ...
62-
tracker = CentroidTracker(...)
59+
tracker = CentroidTracker(...) # or IOUTracker(...), CentroidKF_Tracker(...), SORT(...)
6360
6461
while True:
6562
done, image = <read(input_data)>
6663
if done:
6764
break
6865
6966
detection_bboxes, detection_confidences, detection_class_ids = detector.detect(image)
67+
# NOTE:
68+
# * `detection_bboxes` are numpy.ndarray of shape (n, 4) with each row containing (bb_left, bb_top, bb_width, bb_height)
69+
# * `detection_confidences` are numpy.ndarray of shape (n,);
70+
# * `detection_class_ids` are numpy.ndarray of shape (n,).
7071
7172
output_tracks = tracker.track(detection_bboxes, detection_confidences, detection_class_ids)
7273
@@ -78,6 +79,9 @@ while True:
7879
print(track)
7980
```
8081

82+
Please refer [examples](https://github.com/adipandas/multi-object-tracker/tree/master/examples) folder of this repository for more details.
83+
You can clone and run the examples as shown [here](examples/readme.md).
84+
8185
## Pretrained object detection models
8286

8387
You will have to download the pretrained weights for the neural-network models.

0 commit comments

Comments
 (0)