-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_datacube.m
42 lines (28 loc) · 1.26 KB
/
make_datacube.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function make_datacube(input_imzml, input_peaks, sa_path)
addpath(genpath(sa_path));
addJARsToClassPath();
parser = ImzMLParser(input_imzml);
parser.parse;
data = DataOnDisk(parser);
load(input_peaks);
spectralChannels = [peaks.centroid];
%% Make datacube
disp(['! Generating data cube with ' num2str(length(spectralChannels)) ' peaks...'])
% If peakTolerance < 0 then the detected peak width is used
peakTolerance = -1;
reduction = DatacubeReduction(peakTolerance);
reduction.setPeakList(peaks);
% Inform the user whether we are using fast methods for processing (i.e. Java methods)
addlistener(reduction, 'FastMethods', @(src, canUseFastMethods)disp(['! Using fast Methods? ' num2str(canUseFastMethods.bool)]));
dataRepresentationList = reduction.process(data);
disp('Data cube generated')
% We only requested one data representation, the entire dataset so extract that from the list
dataRepresentation = dataRepresentationList.get(1);
% Convert class to struct so that if SpectralAnalysis changes the DataRepresentation class, the data can still be loaded in
disp('Structure prepared')
dataRepresentation_struct = dataRepresentation.saveobj();
%% Save all
disp('Saving structure')
save('datacube.mat', '-struct', 'dataRepresentation_struct', '-v7.3')
disp('Complete')
end