-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathcdc_device.c
559 lines (449 loc) · 18.2 KB
/
cdc_device.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (CFG_TUD_ENABLED && CFG_TUD_CDC)
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "cdc_device.h"
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
#ifndef CFG_TUD_CDC_LOG_LEVEL
#define CFG_TUD_CDC_LOG_LEVEL CFG_TUD_LOG_LEVEL
#endif
#define TU_LOG_DRV(...) TU_LOG(CFG_TUD_CDC_LOG_LEVEL, __VA_ARGS__)
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
#define BULK_PACKET_SIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
typedef struct {
uint8_t itf_num;
uint8_t ep_notif;
uint8_t ep_in;
uint8_t ep_out;
// Bit 0: DTR (Data Terminal Ready), Bit 1: RTS (Request to Send)
uint8_t line_state;
// Notify host of flow control bits: DSR, DCD, RI, and some error flags.
cdc_serial_state_t serial_state;
bool serial_state_changed;
/*------------- From this point, data is not cleared by bus reset -------------*/
char wanted_char;
TU_ATTR_ALIGNED(4) cdc_line_coding_t line_coding;
// FIFO
tu_fifo_t rx_ff;
tu_fifo_t tx_ff;
uint8_t rx_ff_buf[CFG_TUD_CDC_RX_BUFSIZE];
uint8_t tx_ff_buf[CFG_TUD_CDC_TX_BUFSIZE];
OSAL_MUTEX_DEF(rx_ff_mutex);
OSAL_MUTEX_DEF(tx_ff_mutex);
} cdcd_interface_t;
#define ITF_MEM_RESET_SIZE offsetof(cdcd_interface_t, wanted_char)
typedef struct {
TUD_EPBUF_DEF(epout, CFG_TUD_CDC_EP_BUFSIZE);
TUD_EPBUF_DEF(epin, CFG_TUD_CDC_EP_BUFSIZE);
TUD_EPBUF_DEF(epnotif, CFG_TUD_CDC_EP_BUFSIZE);
} cdcd_epbuf_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static cdcd_interface_t _cdcd_itf[CFG_TUD_CDC];
CFG_TUD_MEM_SECTION static cdcd_epbuf_t _cdcd_epbuf[CFG_TUD_CDC];
static tud_cdc_configure_fifo_t _cdcd_fifo_cfg;
static bool _prep_out_transaction(uint8_t itf) {
const uint8_t rhport = 0;
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
cdcd_epbuf_t* p_epbuf = &_cdcd_epbuf[itf];
// Skip if usb is not ready yet
TU_VERIFY(tud_ready() && p_cdc->ep_out);
uint16_t available = tu_fifo_remaining(&p_cdc->rx_ff);
// Prepare for incoming data but only allow what we can store in the ring buffer.
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= CFG_TUD_CDC_EP_BUFSIZE);
// claim endpoint
TU_VERIFY(usbd_edpt_claim(rhport, p_cdc->ep_out));
// fifo can be changed before endpoint is claimed
available = tu_fifo_remaining(&p_cdc->rx_ff);
if (available >= CFG_TUD_CDC_EP_BUFSIZE) {
return usbd_edpt_xfer(rhport, p_cdc->ep_out, p_epbuf->epout, CFG_TUD_CDC_EP_BUFSIZE);
} else {
// Release endpoint since we don't make any transfer
usbd_edpt_release(rhport, p_cdc->ep_out);
return false;
}
}
bool _send_serial_state_notification(cdcd_interface_t *p_cdc) {
const uint8_t rhport = 0;
if (!p_cdc->serial_state_changed) {
// Nothing to do.
return true;
}
if (!usbd_edpt_claim(rhport, p_cdc->ep_notif)) {
// If claim failed, we're already in the middle of a transaction.
// cdcd_xfer_cb() will pick up this change.
return true;
}
// We have the end point. Build and send the notification.
p_cdc->serial_state_changed = false;
cdc_notify_struct_t notif_buf = cdc_notify_serial_status;
notif_buf.header.wIndex = p_cdc->itf_num;
notif_buf.serial_state = p_cdc->serial_state;
cdcd_epbuf_t* p_epbuf = &_cdcd_epbuf[p_cdc->itf_num];
memcpy(&p_epbuf->epnotif, ¬if_buf, sizeof(cdc_notify_struct_t));
return usbd_edpt_xfer(rhport, p_cdc->ep_notif, (uint8_t *) &(p_epbuf->epnotif), sizeof(p_epbuf->epnotif));
}
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_cdc_configure_fifo(const tud_cdc_configure_fifo_t* cfg) {
TU_VERIFY(cfg);
_cdcd_fifo_cfg = (*cfg);
return true;
}
bool tud_cdc_n_ready(uint8_t itf) {
return tud_ready() && _cdcd_itf[itf].ep_in != 0 && _cdcd_itf[itf].ep_out != 0;
}
bool tud_cdc_n_connected(uint8_t itf) {
// DTR (bit 0) active is considered as connected
return tud_ready() && tu_bit_test(_cdcd_itf[itf].line_state, 0);
}
uint8_t tud_cdc_n_get_line_state(uint8_t itf) {
return _cdcd_itf[itf].line_state;
}
cdc_serial_state_t tud_cdc_n_get_serial_state(uint8_t itf) {
return _cdcd_itf[itf].serial_state;
}
void tud_cdc_n_set_serial_state(uint8_t itf, cdc_serial_state_t serial_state) {
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
if (p_cdc->serial_state.state != serial_state.state) {
p_cdc->serial_state_changed = true;
p_cdc->serial_state = serial_state;
_send_serial_state_notification(p_cdc);
}
}
void tud_cdc_n_get_line_coding(uint8_t itf, cdc_line_coding_t* coding) {
(*coding) = _cdcd_itf[itf].line_coding;
}
void tud_cdc_n_set_wanted_char(uint8_t itf, char wanted) {
_cdcd_itf[itf].wanted_char = wanted;
}
//--------------------------------------------------------------------+
// READ API
//--------------------------------------------------------------------+
uint32_t tud_cdc_n_available(uint8_t itf) {
return tu_fifo_count(&_cdcd_itf[itf].rx_ff);
}
uint32_t tud_cdc_n_read(uint8_t itf, void* buffer, uint32_t bufsize) {
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
uint32_t num_read = tu_fifo_read_n(&p_cdc->rx_ff, buffer, (uint16_t) TU_MIN(bufsize, UINT16_MAX));
_prep_out_transaction(itf);
return num_read;
}
bool tud_cdc_n_peek(uint8_t itf, uint8_t* chr) {
return tu_fifo_peek(&_cdcd_itf[itf].rx_ff, chr);
}
void tud_cdc_n_read_flush(uint8_t itf) {
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
tu_fifo_clear(&p_cdc->rx_ff);
_prep_out_transaction(itf);
}
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
uint32_t tud_cdc_n_write(uint8_t itf, const void* buffer, uint32_t bufsize) {
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
uint16_t ret = tu_fifo_write_n(&p_cdc->tx_ff, buffer, (uint16_t) TU_MIN(bufsize, UINT16_MAX));
// flush if queue more than packet size
if (tu_fifo_count(&p_cdc->tx_ff) >= BULK_PACKET_SIZE
#if CFG_TUD_CDC_TX_BUFSIZE < BULK_PACKET_SIZE
|| tu_fifo_full(&p_cdc->tx_ff) // check full if fifo size is less than packet size
#endif
) {
tud_cdc_n_write_flush(itf);
}
return ret;
}
uint32_t tud_cdc_n_write_flush(uint8_t itf) {
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
cdcd_epbuf_t* p_epbuf = &_cdcd_epbuf[itf];
// Skip if usb is not ready yet
TU_VERIFY(tud_ready(), 0);
// No data to send
if (!tu_fifo_count(&p_cdc->tx_ff)) {
return 0;
}
const uint8_t rhport = 0;
// Claim the endpoint
TU_VERIFY(usbd_edpt_claim(rhport, p_cdc->ep_in), 0);
// Pull data from FIFO
const uint16_t count = tu_fifo_read_n(&p_cdc->tx_ff, p_epbuf->epin, CFG_TUD_CDC_EP_BUFSIZE);
if (count) {
TU_ASSERT(usbd_edpt_xfer(rhport, p_cdc->ep_in, p_epbuf->epin, count), 0);
return count;
} else {
// Release endpoint since we don't make any transfer
// Note: data is dropped if terminal is not connected
usbd_edpt_release(rhport, p_cdc->ep_in);
return 0;
}
}
uint32_t tud_cdc_n_write_available(uint8_t itf) {
return tu_fifo_remaining(&_cdcd_itf[itf].tx_ff);
}
bool tud_cdc_n_write_clear(uint8_t itf) {
return tu_fifo_clear(&_cdcd_itf[itf].tx_ff);
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void cdcd_init(void) {
tu_memclr(_cdcd_itf, sizeof(_cdcd_itf));
tu_memclr(&_cdcd_fifo_cfg, sizeof(_cdcd_fifo_cfg));
for (uint8_t i = 0; i < CFG_TUD_CDC; i++) {
cdcd_interface_t* p_cdc = &_cdcd_itf[i];
p_cdc->wanted_char = (char) -1;
// default line coding is : stop bit = 1, parity = none, data bits = 8
p_cdc->line_coding.bit_rate = 115200;
p_cdc->line_coding.stop_bits = 0;
p_cdc->line_coding.parity = 0;
p_cdc->line_coding.data_bits = 8;
// Config RX fifo
tu_fifo_config(&p_cdc->rx_ff, p_cdc->rx_ff_buf, TU_ARRAY_SIZE(p_cdc->rx_ff_buf), 1, false);
// Config TX fifo as overwritable at initialization and will be changed to non-overwritable
// if terminal supports DTR bit. Without DTR we do not know if data is actually polled by terminal.
// In this way, the most current data is prioritized.
tu_fifo_config(&p_cdc->tx_ff, p_cdc->tx_ff_buf, TU_ARRAY_SIZE(p_cdc->tx_ff_buf), 1, true);
#if OSAL_MUTEX_REQUIRED
osal_mutex_t mutex_rd = osal_mutex_create(&p_cdc->rx_ff_mutex);
osal_mutex_t mutex_wr = osal_mutex_create(&p_cdc->tx_ff_mutex);
TU_ASSERT(mutex_rd != NULL && mutex_wr != NULL, );
tu_fifo_config_mutex(&p_cdc->rx_ff, NULL, mutex_rd);
tu_fifo_config_mutex(&p_cdc->tx_ff, mutex_wr, NULL);
#endif
}
}
bool cdcd_deinit(void) {
#if OSAL_MUTEX_REQUIRED
for(uint8_t i=0; i<CFG_TUD_CDC; i++) {
cdcd_interface_t* p_cdc = &_cdcd_itf[i];
osal_mutex_t mutex_rd = p_cdc->rx_ff.mutex_rd;
osal_mutex_t mutex_wr = p_cdc->tx_ff.mutex_wr;
if (mutex_rd) {
osal_mutex_delete(mutex_rd);
tu_fifo_config_mutex(&p_cdc->rx_ff, NULL, NULL);
}
if (mutex_wr) {
osal_mutex_delete(mutex_wr);
tu_fifo_config_mutex(&p_cdc->tx_ff, NULL, NULL);
}
}
#endif
return true;
}
void cdcd_reset(uint8_t rhport) {
(void) rhport;
for (uint8_t i = 0; i < CFG_TUD_CDC; i++) {
cdcd_interface_t* p_cdc = &_cdcd_itf[i];
tu_memclr(p_cdc, ITF_MEM_RESET_SIZE);
if (!_cdcd_fifo_cfg.rx_persistent) {
tu_fifo_clear(&p_cdc->rx_ff);
}
if (!_cdcd_fifo_cfg.tx_persistent) {
tu_fifo_clear(&p_cdc->tx_ff);
}
tu_fifo_set_overwritable(&p_cdc->tx_ff, true);
}
}
uint16_t cdcd_open(uint8_t rhport, const tusb_desc_interface_t* itf_desc, uint16_t max_len) {
// Only support ACM subclass
TU_VERIFY( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass, 0);
// Find available interface
cdcd_interface_t* p_cdc;
uint8_t cdc_id;
for (cdc_id = 0; cdc_id < CFG_TUD_CDC; cdc_id++) {
p_cdc = &_cdcd_itf[cdc_id];
if (p_cdc->ep_in == 0) {
break;
}
}
TU_ASSERT(cdc_id < CFG_TUD_CDC, 0);
//------------- Control Interface -------------//
p_cdc->itf_num = itf_desc->bInterfaceNumber;
uint16_t drv_len = sizeof(tusb_desc_interface_t);
const uint8_t* p_desc = tu_desc_next(itf_desc);
// Communication Functional Descriptors
while (TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len) {
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
if (TUSB_DESC_ENDPOINT == tu_desc_type(p_desc)) {
// notification endpoint
const tusb_desc_endpoint_t* desc_ep = (const tusb_desc_endpoint_t*) p_desc;
TU_ASSERT(usbd_edpt_open(rhport, desc_ep), 0);
p_cdc->ep_notif = desc_ep->bEndpointAddress;
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface (if any) -------------//
if ((TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) &&
(TUSB_CLASS_CDC_DATA == ((const tusb_desc_interface_t*) p_desc)->bInterfaceClass)) {
// next to endpoint descriptor
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in), 0);
drv_len += 2 * sizeof(tusb_desc_endpoint_t);
}
// Prepare for incoming data
_prep_out_transaction(cdc_id);
return drv_len;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool cdcd_control_xfer_cb(uint8_t rhport, uint8_t stage, const tusb_control_request_t* request) {
// Handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
uint8_t itf;
cdcd_interface_t* p_cdc;
// Identify which interface to use
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
p_cdc = &_cdcd_itf[itf];
if (p_cdc->itf_num == request->wIndex) {
break;
}
}
TU_VERIFY(itf < CFG_TUD_CDC);
switch (request->bRequest) {
case CDC_REQUEST_SET_LINE_CODING:
if (stage == CONTROL_STAGE_SETUP) {
TU_LOG_DRV(" Set Line Coding\r\n");
tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t));
} else if (stage == CONTROL_STAGE_ACK) {
if (tud_cdc_line_coding_cb) {
tud_cdc_line_coding_cb(itf, &p_cdc->line_coding);
}
}
break;
case CDC_REQUEST_GET_LINE_CODING:
if (stage == CONTROL_STAGE_SETUP) {
TU_LOG_DRV(" Get Line Coding\r\n");
tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t));
}
break;
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
if (stage == CONTROL_STAGE_SETUP) {
tud_control_status(rhport, request);
} else if (stage == CONTROL_STAGE_ACK) {
// CDC PSTN v1.2 section 6.3.12
// Bit 0: Indicates if DTE is present or not.
// This signal corresponds to V.24 signal 108/2 and RS-232 signal DTR (Data Terminal Ready)
// Bit 1: Carrier control for half-duplex modems.
// This signal corresponds to V.24 signal 105 and RS-232 signal RTS (Request to Send)
bool const dtr = tu_bit_test(request->wValue, 0);
bool const rts = tu_bit_test(request->wValue, 1);
p_cdc->line_state = (uint8_t) request->wValue;
// Disable fifo overwriting if DTR bit is set
tu_fifo_set_overwritable(&p_cdc->tx_ff, !dtr);
TU_LOG_DRV(" Set Control Line State: DTR = %d, RTS = %d\r\n", dtr, rts);
// Invoke callback
if (tud_cdc_line_state_cb) {
tud_cdc_line_state_cb(itf, dtr, rts);
}
}
break;
case CDC_REQUEST_SEND_BREAK:
if (stage == CONTROL_STAGE_SETUP) {
tud_control_status(rhport, request);
} else if (stage == CONTROL_STAGE_ACK) {
TU_LOG_DRV(" Send Break\r\n");
if (tud_cdc_send_break_cb) {
tud_cdc_send_break_cb(itf, request->wValue);
}
}
break;
default:
return false; // stall unsupported request
}
return true;
}
bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) result;
uint8_t itf;
cdcd_interface_t* p_cdc;
// Identify which interface to use
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
p_cdc = &_cdcd_itf[itf];
if ((ep_addr == p_cdc->ep_out) || (ep_addr == p_cdc->ep_in) || (ep_addr == p_cdc->ep_notif)) {
break;
}
}
TU_ASSERT(itf < CFG_TUD_CDC);
cdcd_epbuf_t* p_epbuf = &_cdcd_epbuf[itf];
// Received new data
if (ep_addr == p_cdc->ep_out) {
tu_fifo_write_n(&p_cdc->rx_ff, p_epbuf->epout, (uint16_t) xferred_bytes);
// Check for wanted char and invoke callback if needed
if (tud_cdc_rx_wanted_cb && (((signed char) p_cdc->wanted_char) != -1)) {
for (uint32_t i = 0; i < xferred_bytes; i++) {
if ((p_cdc->wanted_char == p_epbuf->epout[i]) && !tu_fifo_empty(&p_cdc->rx_ff)) {
tud_cdc_rx_wanted_cb(itf, p_cdc->wanted_char);
}
}
}
// invoke receive callback (if there is still data)
if (tud_cdc_rx_cb && !tu_fifo_empty(&p_cdc->rx_ff)) {
tud_cdc_rx_cb(itf);
}
// prepare for OUT transaction
_prep_out_transaction(itf);
}
// Data sent to host, we continue to fetch from tx fifo to send.
// Note: This will cause incorrect baudrate set in line coding.
// Though maybe the baudrate is not really important !!!
if (ep_addr == p_cdc->ep_in) {
// invoke transmit callback to possibly refill tx fifo
if (tud_cdc_tx_complete_cb) {
tud_cdc_tx_complete_cb(itf);
}
if (0 == tud_cdc_n_write_flush(itf)) {
// If there is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP Packet size and not zero
if (!tu_fifo_count(&p_cdc->tx_ff) && xferred_bytes && (0 == (xferred_bytes & (BULK_PACKET_SIZE - 1)))) {
if (usbd_edpt_claim(rhport, p_cdc->ep_in)) {
usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0);
}
}
}
}
// Notifications
if (ep_addr == p_cdc->ep_notif) {
// Send any changes that may have come in while sending the previous change.
return _send_serial_state_notification(p_cdc);
}
return true;
}
#endif