Skip to content

Commit 3d682de

Browse files
istranicalgitbook-bot
authored andcommitted
GITBOOK-1: No subject
1 parent c85a635 commit 3d682de

File tree

98 files changed

+9701
-119
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

98 files changed

+9701
-119
lines changed
320 KB
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
48.6 KB
Loading

Diff for: README.md

+35-30
Original file line numberDiff line numberDiff line change
@@ -1,67 +1,72 @@
11
---
22
description: We hope you enjoy Docs for Deep Lake.
3+
layout:
4+
title:
5+
visible: true
6+
description:
7+
visible: true
8+
tableOfContents:
9+
visible: true
10+
outline:
11+
visible: true
12+
pagination:
13+
visible: true
314
---
415

5-
# Deep Lake Docs
16+
# 🏠 Deep Lake Docs
617

718
## Activeloop Deep Lake
819

9-
### Deep Lake as a Vector Store for LLM Applications
20+
### Use Cases for Deep Lake
1021

11-
* **Store and search embeddings and their metadata including text, jsons, images, audio, video, and more. Save the data locally, in your cloud, or on Deep Lake storage.**
12-
* **Build LLM Apps using or integrations with** [**LangChain**](tutorials/vector-store/deep-lake-vector-store-in-langchain.md) **and LlamaIndex**
13-
* **Run computations locally or on our** [**Managed Tensor Database**](performance-features/managed-database/)
22+
#### Deep Lake as a Data Lake For Deep Learning
1423

15-
### Deep Lake as a Data Lake For Deep Learning
24+
* Store and organize unstructured data (images, audios, nifti, videos, text, metadata, and more) in a versioned data format optimized for Deep Learning performance.
25+
* Rapidly query and visualize your data in order to create optimal training sets.
26+
* Stream training data from your cloud to multiple GPUs, without any copying or bottlenecks.
1627

17-
* **Store images, audios, videos, text and their metadata (i.e. annotations) in a data format optimized for Deep Learning. Save the data locally, in your cloud, or on Activeloop storage.**
18-
* **Rapidly train PyTorch and TensorFlow models while streaming data with no boilerplate code.**
19-
* **Run version control, dataset queries, and distributed workloads using a simple Python API.**
28+
#### Deep Lake as a Vector Store for RAG Applications
29+
30+
* Store and search embeddings and their metadata including text, jsons, images, audio, video, and more. Save the data locally, in your cloud, or on Deep Lake storage.
31+
* Build Retrieval Augmented Generation (RAG) Apps using our integrations with [LangChain](examples/rag/langchain-integration.md) and [LlamaIndex](examples/rag/llamaindex-integration.md)
32+
* Run computations locally or on our [Managed Tensor Database](examples/rag/managed-database/)
2033

2134
<figure><img src=".gitbook/assets/Two_Way_Utility.png" alt=""><figcaption><p>Deep Lake Architecture for Inference and Model Development Applications.</p></figcaption></figure>
2235

23-
### To start using Deep Lake ASAP, check out our [Vector Store Quickstart](quickstart.md), [Deep Learning Quickstart](quickstart-dl.md), [Getting Started Guides](getting-started/), [Tutorials](tutorials/), and [Playbooks](playbooks/).
36+
### To start using Deep Lake ASAP, check out our [Deep Learning Quickstart](examples/dl/quickstart.md), [RAG Quickstart](examples/rag/quickstart.md), and [Deep Learning Playbooks](examples/dl/playbooks/).
2437

2538
Please check out Deep Lake's [GitHub repository](https://github.com/activeloopai/Hub) and give us a ⭐ if you like the project. &#x20;
2639

2740
Join our [Slack Community ](https://slack.activeloop.ai)if you need help or have suggestions for improving documentation!
2841

2942
### Deep Lake Docs Overview
3043

31-
{% content-ref url="quickstart.md" %}
32-
[quickstart.md](quickstart.md)
33-
{% endcontent-ref %}
34-
35-
{% content-ref url="quickstart-dl.md" %}
36-
[quickstart-dl.md](quickstart-dl.md)
37-
{% endcontent-ref %}
38-
39-
{% content-ref url="storage-and-credentials/" %}
40-
[storage-and-credentials](storage-and-credentials/)
44+
{% content-ref url="setup/authentication/" %}
45+
[authentication](setup/authentication/)
4146
{% endcontent-ref %}
4247

43-
{% content-ref url="getting-started/" %}
44-
[getting-started](getting-started/)
48+
{% content-ref url="examples/dl/quickstart.md" %}
49+
[quickstart.md](examples/dl/quickstart.md)
4550
{% endcontent-ref %}
4651

47-
{% content-ref url="tutorials/" %}
48-
[tutorials](tutorials/)
52+
{% content-ref url="examples/rag/quickstart.md" %}
53+
[quickstart.md](examples/rag/quickstart.md)
4954
{% endcontent-ref %}
5055

51-
{% content-ref url="playbooks/" %}
52-
[playbooks](playbooks/)
56+
{% content-ref url="examples/dl/playbooks/" %}
57+
[playbooks](examples/dl/playbooks/)
5358
{% endcontent-ref %}
5459

55-
{% content-ref url="technical-details/dataset-visualization.md" %}
56-
[dataset-visualization.md](technical-details/dataset-visualization.md)
60+
{% content-ref url="examples/dl/tutorials/" %}
61+
[tutorials](examples/dl/tutorials/)
5762
{% endcontent-ref %}
5863

5964
{% content-ref url="technical-details/best-practices/" %}
6065
[best-practices](technical-details/best-practices/)
6166
{% endcontent-ref %}
6267

63-
{% content-ref url="api-basics.md" %}
64-
[api-basics.md](api-basics.md)
68+
{% content-ref url="examples/dl/api.md" %}
69+
[api.md](examples/dl/api.md)
6570
{% endcontent-ref %}
6671

6772

Diff for: SUMMARY.md

+82-83
Original file line numberDiff line numberDiff line change
@@ -1,86 +1,84 @@
11
# Table of contents
22

3-
* [Deep Lake Docs](README.md)
4-
* [Vector Store Quickstart](quickstart.md)
5-
* [Deep Learning Quickstart](quickstart-dl.md)
6-
* [Storage & Credentials](storage-and-credentials/README.md)
7-
* [Storage Options](storage-and-credentials/storage-options.md)
8-
* [User Authentication](storage-and-credentials/user-authentication.md)
9-
* [Storing Deep Lake Data in Your Own Cloud](storage-and-credentials/managed-credentials/README.md)
10-
* [Microsoft Azure](storage-and-credentials/managed-credentials/microsoft-azure/README.md)
11-
* [Provisioning Federated Credentials](storage-and-credentials/managed-credentials/microsoft-azure/provisioning-federated-credentials.md)
12-
* [Enabling CORS](storage-and-credentials/managed-credentials/microsoft-azure/enabling-cors.md)
13-
* [Amazon Web Services](storage-and-credentials/managed-credentials/amazon-web-services/README.md)
14-
* [Provisioning Role-Based Access](storage-and-credentials/managed-credentials/amazon-web-services/provisioning-role-based-access.md)
15-
* [Enabling CORS](storage-and-credentials/managed-credentials/amazon-web-services/enabling-cors.md)
3+
* [🏠 Deep Lake Docs](README.md)
164
* [List of ML Datasets](https://datasets.activeloop.ai/docs/ml/datasets/)
175

18-
## 🏢 High-Performance Features <a href="#performance-features" id="performance-features"></a>
6+
## 🏗️ SETUP
197

20-
* [Introduction](performance-features/introduction.md)
21-
* [Performant Dataloader](performance-features/performant-dataloader.md)
22-
* [Tensor Query Language (TQL)](performance-features/querying-datasets/README.md)
23-
* [TQL Syntax](performance-features/querying-datasets/query-syntax.md)
24-
* [Sampling Datasets](performance-features/querying-datasets/sampling-datasets.md)
25-
* [Deep Memory](performance-features/deep-memory/README.md)
26-
* [How it Works](performance-features/deep-memory/how-it-works.md)
27-
* [Index for ANN Search](performance-features/index-for-ann-search/README.md)
28-
* [Caching and Optimization](performance-features/index-for-ann-search/caching-and-optimization.md)
29-
* [Managed Tensor Database](performance-features/managed-database/README.md)
30-
* [REST API](performance-features/managed-database/rest-api.md)
31-
* [Migrating Datasets to the Tensor Database](performance-features/managed-database/migrating-datasets-to-the-tensor-database.md)
8+
* [Installation](setup/installation.md)
9+
* [User Authentication](setup/authentication/README.md)
10+
* [Workload Identities (Azure Only)](setup/authentication/workload-identities.md)
11+
* [Storage and Credentials](setup/storage-and-creds/README.md)
12+
* [Storage Options](setup/storage-and-creds/storage-options.md)
13+
* [Setting up Deep Lake in Your Cloud](setup/storage-and-creds/managed-credentials/README.md)
14+
* [Microsoft Azure](setup/storage-and-creds/managed-credentials/microsoft-azure/README.md)
15+
* [Provisioning Federated Credentials](setup/storage-and-creds/managed-credentials/microsoft-azure/provisioning-federated-credentials.md)
16+
* [Enabling CORS](setup/storage-and-creds/managed-credentials/microsoft-azure/enabling-cors.md)
17+
* [Amazon Web Services](setup/storage-and-creds/managed-credentials/amazon-web-services/README.md)
18+
* [Provisioning Role-Based Access](setup/storage-and-creds/managed-credentials/amazon-web-services/provisioning-rbac.md)
19+
* [Enabling CORS](setup/storage-and-creds/managed-credentials/amazon-web-services/enabling-cors.md)
3220

33-
## 📚 EXAMPLE CODE
21+
## 📚 Examples
3422

35-
* [Getting Started](getting-started/README.md)
36-
* [Vector Store](getting-started/vector-store/README.md)
37-
* [Step 1: Hello World](getting-started/vector-store/step-1-hello-world.md)
38-
* [Step 2: Creating Deep Lake Vector Stores](getting-started/vector-store/step-2-creating-deep-lake-vector-stores.md)
39-
* [Step 3: Performing Search in Vector Stores](getting-started/vector-store/step-3-performing-search-in-the-vector-store.md)
40-
* [Step 4: Customizing Vector Stores](getting-started/vector-store/step-4-customizing-vector-stores.md)
41-
* [Deep Learning](getting-started/deep-learning/README.md)
42-
* [Step 1: Hello World](getting-started/deep-learning/hello-world.md)
43-
* [Step 2: Creating Deep Lake Datasets](getting-started/deep-learning/creating-datasets-manually.md)
44-
* [Step 3: Understanding Compression](getting-started/deep-learning/understanding-compression.md)
45-
* [Step 4: Accessing and Updating Data](getting-started/deep-learning/accessing-datasets.md)
46-
* [Step 5: Visualizing Datasets](getting-started/deep-learning/visualizing-datasets.md)
47-
* [Step 6: Using Activeloop Storage](getting-started/deep-learning/using-activeloop-storage.md)
48-
* [Step 7: Connecting Deep Lake Datasets to ML Frameworks](getting-started/deep-learning/connecting-to-ml-frameworks.md)
49-
* [Step 8: Parallel Computing](getting-started/deep-learning/parallel-computing.md)
50-
* [Step 9: Dataset Version Control](getting-started/deep-learning/dataset-version-control.md)
51-
* [Step 10: Dataset Filtering](getting-started/deep-learning/dataset-filtering.md)
52-
* [Tutorials (w Colab)](tutorials/README.md)
53-
* [Vector Store Tutorials](tutorials/vector-store/README.md)
54-
* [Vector Search Options](tutorials/vector-store/vector-search-options/README.md)
55-
* [Deep Lake Vector Store API](tutorials/vector-store/vector-search-options/deep-lake-vector-store-api.md)
56-
* [REST API](tutorials/vector-store/vector-search-options/rest-api.md)
57-
* [LangChain API](tutorials/vector-store/vector-search-options/langchain-api.md)
58-
* [Image Similarity Search](tutorials/vector-store/image-similarity-search.md)
59-
* [Deep Lake Vector Store in LangChain](tutorials/vector-store/deep-lake-vector-store-in-langchain.md)
60-
* [Improving Search Accuracy using Deep Memory](tutorials/vector-store/improving-search-accuracy-using-deep-memory.md)
61-
* [Deep Learning Tutorials](tutorials/deep-learning/README.md)
62-
* [Creating Datasets](tutorials/deep-learning/creating-datasets/README.md)
63-
* [Creating Complex Datasets](tutorials/deep-learning/creating-datasets/creating-complex-datasets.md)
64-
* [Creating Object Detection Datasets](tutorials/deep-learning/creating-datasets/creating-object-detection-datasets.md)
65-
* [Creating Time-Series Datasets](tutorials/deep-learning/creating-datasets/creating-time-series-datasets.md)
66-
* [Creating Datasets with Sequences](tutorials/deep-learning/creating-datasets/creating-datasets-with-sequences.md)
67-
* [Creating Video Datasets](tutorials/deep-learning/creating-datasets/creating-video-datasets.md)
68-
* [Training Models](tutorials/deep-learning/training-models/README.md)
69-
* [Training an Image Classification Model in PyTorch](tutorials/deep-learning/training-models/training-an-image-classification-model-in-pytorch.md)
70-
* [Training Models Using MMDetection](tutorials/deep-learning/training-models/training-models-using-mmdetection.md)
71-
* [Training Models Using PyTorch Lightning](tutorials/deep-learning/training-models/training-models-using-pytorch-lightning.md)
72-
* [Training on AWS SageMaker](tutorials/deep-learning/training-models/training-on-aws-sagemaker.md)
73-
* [Training an Object Detection and Segmentation Model in PyTorch](tutorials/deep-learning/training-models/training-an-object-detection-and-segmentation-model-in-pytorch.md)
74-
* [Updating Datasets](tutorials/deep-learning/updating-datasets.md)
75-
* [Data Processing Using Parallel Computing](tutorials/deep-learning/data-processing-using-parallel-computing.md)
76-
* [Concurrent Writes](tutorials/concurrent-writes/README.md)
77-
* [Concurrency Using Zookeeper Locks](tutorials/concurrent-writes/concurrency-using-zookeeper-locks.md)
78-
* [Playbooks](playbooks/README.md)
79-
* [Querying, Training and Editing Datasets with Data Lineage](playbooks/training-with-lineage.md)
80-
* [Evaluating Model Performance](playbooks/evaluating-model-performance.md)
81-
* [Training Reproducibility Using Deep Lake and Weights & Biases](playbooks/training-reproducibility-with-wandb.md)
82-
* [Working with Videos](playbooks/working-with-videos.md)
83-
* [Low-Level API Summary](api-basics.md)
23+
* [Deep Learning](examples/dl/README.md)
24+
* [Deep Learning Quickstart](examples/dl/quickstart.md)
25+
* [Deep Learning Guide](examples/dl/guide/README.md)
26+
* [Step 1: Hello World](examples/dl/guide/hello-world.md)
27+
* [Step 2: Creating Deep Lake Datasets](examples/dl/guide/creating-datasets.md)
28+
* [Step 3: Understanding Compression](examples/dl/guide/understanding-compression.md)
29+
* [Step 4: Accessing and Updating Data](examples/dl/guide/accessing-datasets.md)
30+
* [Step 5: Visualizing Datasets](examples/dl/guide/visualizing-datasets.md)
31+
* [Step 6: Using Activeloop Storage](examples/dl/guide/using-activeloop-storage.md)
32+
* [Step 7: Connecting Deep Lake Datasets to ML Frameworks](examples/dl/guide/connecting-to-ml-frameworks.md)
33+
* [Step 8: Parallel Computing](examples/dl/guide/parallel-computing.md)
34+
* [Step 9: Dataset Version Control](examples/dl/guide/dataset-version-control.md)
35+
* [Step 10: Dataset Filtering](examples/dl/guide/dataset-filtering.md)
36+
* [Deep Learning Tutorials](examples/dl/tutorials/README.md)
37+
* [Creating Datasets](examples/dl/tutorials/creating-datasets/README.md)
38+
* [Creating Complex Datasets](examples/dl/tutorials/creating-datasets/creating-complex-datasets.md)
39+
* [Creating Object Detection Datasets](examples/dl/tutorials/creating-datasets/creating-object-detection-datasets.md)
40+
* [Creating Time-Series Datasets](examples/dl/tutorials/creating-datasets/creating-time-series-datasets.md)
41+
* [Creating Datasets with Sequences](examples/dl/tutorials/creating-datasets/creating-datasets-with-sequences.md)
42+
* [Creating Video Datasets](examples/dl/tutorials/creating-datasets/creating-video-datasets.md)
43+
* [Training Models](examples/dl/tutorials/training-models/README.md)
44+
* [Splitting Datasets for Training](examples/dl/tutorials/training-models/splitting-datasets-training.md)
45+
* [Training an Image Classification Model in PyTorch](examples/dl/tutorials/training-models/training-classification-pytorch.md)
46+
* [Training Models Using MMDetection](examples/dl/tutorials/training-models/training-mmdet.md)
47+
* [Training Models Using PyTorch Lightning](examples/dl/tutorials/training-models/training-lightning.md)
48+
* [Training on AWS SageMaker](examples/dl/tutorials/training-models/training-sagemaker.md)
49+
* [Training an Object Detection and Segmentation Model in PyTorch](examples/dl/tutorials/training-models/training-od-and-seg-pytorch.md)
50+
* [Updating Datasets](examples/dl/tutorials/updating-datasets.md)
51+
* [Data Processing Using Parallel Computing](examples/dl/tutorials/data-processing-using-parallel-computing.md)
52+
* [Deep Learning Playbooks](examples/dl/playbooks/README.md)
53+
* [Querying, Training and Editing Datasets with Data Lineage](examples/dl/playbooks/training-with-lineage.md)
54+
* [Evaluating Model Performance](examples/dl/playbooks/evaluating-model-performance.md)
55+
* [Training Reproducibility Using Deep Lake and Weights & Biases](examples/dl/playbooks/training-reproducibility-wandb.md)
56+
* [Working with Videos](examples/dl/playbooks/working-with-videos.md)
57+
* [Deep Lake Dataloaders](examples/dl/dataloaders.md)
58+
* [API Summary](examples/dl/api.md)
59+
* [RAG](examples/rag/README.md)
60+
* [RAG Quickstart](examples/rag/quickstart.md)
61+
* [RAG Tutorials](examples/rag/tutorials/README.md)
62+
* [Vector Store Basics](examples/rag/tutorials/vector-store-basics.md)
63+
* [Vector Search Options](examples/rag/tutorials/vector-search-options/README.md)
64+
* [LangChain API](examples/rag/tutorials/vector-search-options/langchain-api.md)
65+
* [Deep Lake Vector Store API](examples/rag/tutorials/vector-search-options/vector-store-api.md)
66+
* [Managed Database REST API](examples/rag/tutorials/vector-search-options/rest-api.md)
67+
* [Customizing Your Vector Store](examples/rag/tutorials/step-4-customizing-vector-stores.md)
68+
* [Image Similarity Search](examples/rag/tutorials/image-similarity-search.md)
69+
* [Improving Search Accuracy using Deep Memory](examples/rag/tutorials/deepmemory.md)
70+
* [LangChain Integration](examples/rag/langchain-integration.md)
71+
* [LlamaIndex Integration](examples/rag/llamaindex-integration.md)
72+
* [Managed Tensor Database](examples/rag/managed-database/README.md)
73+
* [REST API](examples/rag/managed-database/rest-api.md)
74+
* [Migrating Datasets to the Tensor Database](examples/rag/managed-database/migrating-datasets-to-the-tensor-database.md)
75+
* [Deep Memory](examples/rag/deep-memory/README.md)
76+
* [How it Works](examples/rag/deep-memory/how-it-works.md)
77+
* [Tensor Query Language (TQL)](examples/tql/README.md)
78+
* [TQL Syntax](examples/tql/syntax.md)
79+
* [Index for ANN Search](examples/tql/ann-index/README.md)
80+
* [Caching and Optimization](examples/tql/ann-index/caching-and-optimization.md)
81+
* [Sampling Datasets](examples/tql/sampling.md)
8482

8583
## 🔬 Technical Details
8684

@@ -89,11 +87,12 @@
8987
* [Training Models at Scale](technical-details/best-practices/training-models-at-scale.md)
9088
* [Storage Synchronization and "with" Context](technical-details/best-practices/storage-synchronization.md)
9189
* [Restoring Corrupted Datasets](technical-details/best-practices/restoring-corrupted-datasets.md)
92-
* [Concurrent Writes](https://docs.activeloop.ai/tutorials/concurrent-writes)
93-
* [Data Layout](technical-details/data-layout.md)
94-
* [Version Control and Querying](technical-details/version-control-and-querying.md)
95-
* [Dataset Visualization](technical-details/dataset-visualization.md)
96-
* [Tensor Relationships](technical-details/tensor-relationships.md)
97-
* [Visualizer Integration](technical-details/visualizer-integration.md)
98-
* [Shuffling in dataloaders](technical-details/shuffling-in-dataloaders.md)
90+
* [Concurrent Writes](technical-details/best-practices/concurrent-writes/README.md)
91+
* [Concurrency Using Zookeeper Locks](technical-details/best-practices/concurrent-writes/concurrency-using-zookeeper-locks.md)
92+
* [Deep Lake Data Format](technical-details/data-format/README.md)
93+
* [Tensor Relationships](technical-details/data-format/tensor-relationships.md)
94+
* [Version Control and Querying](technical-details/data-format/version-control-and-querying.md)
95+
* [Dataset Visualization](technical-details/visualization/README.md)
96+
* [Visualizer Integration](technical-details/visualization/visualizer-integration.md)
97+
* [Shuffling in Dataloaders](technical-details/shuffling.md)
9998
* [How to Contribute](technical-details/how-to-contribute.md)

Diff for: examples/dl/README.md

+14
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
---
2+
description: Using Deep Lake for managing data in Deep Learning applications.
3+
---
4+
5+
# Deep Learning
6+
7+
## Deep Lake as a Data Lake For Deep Learning
8+
9+
Deep Lake can be used as a data management tool for Deep Learning applications, enabling teams to create and ship models faster. Deep Lake's primary capabilities are:&#x20;
10+
11+
* Store and organize unstructured data (images, audios, nifti, videos, text, metadata, and more) in a versioned data format optimized for Deep Learning performance.
12+
* Rapidly query and visualize your data in order to create optimal training sets.
13+
* Stream training data from your cloud to multiple GPUs, without any copying or bottlenecks.
14+

0 commit comments

Comments
 (0)