|
| 1 | +""" |
| 2 | +Totient maximum |
| 3 | +Problem 69: https://projecteuler.net/problem=69 |
| 4 | +
|
| 5 | +Euler's Totient function, φ(n) [sometimes called the phi function], |
| 6 | +is used to determine the number of numbers less than n which are relatively prime to n. |
| 7 | +For example, as 1, 2, 4, 5, 7, and 8, |
| 8 | +are all less than nine and relatively prime to nine, φ(9)=6. |
| 9 | +
|
| 10 | +n Relatively Prime φ(n) n/φ(n) |
| 11 | +2 1 1 2 |
| 12 | +3 1,2 2 1.5 |
| 13 | +4 1,3 2 2 |
| 14 | +5 1,2,3,4 4 1.25 |
| 15 | +6 1,5 2 3 |
| 16 | +7 1,2,3,4,5,6 6 1.1666... |
| 17 | +8 1,3,5,7 4 2 |
| 18 | +9 1,2,4,5,7,8 6 1.5 |
| 19 | +10 1,3,7,9 4 2.5 |
| 20 | +
|
| 21 | +It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10. |
| 22 | +
|
| 23 | +Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum. |
| 24 | +""" |
| 25 | + |
| 26 | + |
| 27 | +def solution(n: int = 10 ** 6) -> int: |
| 28 | + """ |
| 29 | + Returns solution to problem. |
| 30 | + Algorithm: |
| 31 | + 1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below) |
| 32 | + https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula |
| 33 | +
|
| 34 | + 2. Find k/φ(k) for all k ≤ n and return the k that attains maximum |
| 35 | +
|
| 36 | + >>> solution(10) |
| 37 | + 6 |
| 38 | +
|
| 39 | + >>> solution(100) |
| 40 | + 30 |
| 41 | +
|
| 42 | + >>> solution(9973) |
| 43 | + 2310 |
| 44 | +
|
| 45 | + """ |
| 46 | + |
| 47 | + if n <= 0: |
| 48 | + raise ValueError("Please enter an integer greater than 0") |
| 49 | + |
| 50 | + phi = list(range(n + 1)) |
| 51 | + for number in range(2, n + 1): |
| 52 | + if phi[number] == number: |
| 53 | + phi[number] -= 1 |
| 54 | + for multiple in range(number * 2, n + 1, number): |
| 55 | + phi[multiple] = (phi[multiple] // number) * (number - 1) |
| 56 | + |
| 57 | + answer = 1 |
| 58 | + for number in range(1, n + 1): |
| 59 | + if (answer / phi[answer]) < (number / phi[number]): |
| 60 | + answer = number |
| 61 | + |
| 62 | + return answer |
| 63 | + |
| 64 | + |
| 65 | +if __name__ == "__main__": |
| 66 | + print(solution()) |
0 commit comments