-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAppendix_Correspondence_Matrix.tex
246 lines (195 loc) · 9 KB
/
Appendix_Correspondence_Matrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
The correspondence matrix method allows predicting how crystallographic directions and planes transform during twinning. This approach is crucial for analyzing defects inherited from twinning, interactions between slip dislocations and twin boundaries, incorporating parent dislocations into the twinned lattice, and dealing with twin-twin intersections and double twinning. According to Niewczas \cite{Niewczas121}, most current continuum models for plastic deformation of crystals treat twinning incorrectly by only considering rotations, missing important aspects of the lattice transformation. Correspondence matrix approach (an example given in Table \ref{tab:Shear and correspondence matrices for Mg}) is implemented in DAMASK and utilized in the discrete twinning model.
\begin{table}[H]
\centering
\caption{Characteristic Shear and Correspondence matrices for different twinning modes of Mg with c/a=1.624.}
\begin{tabular}{ccc}
\hline
$K_1 / \eta_1$ & Magnitude of shear $s$ & Correspondence matrix $C$ \\
\hline
$( \bar{1} 0 1 2 ) [1 0 \bar{1} 1] $ & 0.128917 & $\begin{bmatrix} -0.25 & 0.433 & -0.924 \\ 0.433 & -0.75 & -0.533 \\ -0.812 & -0.47 & 0 \end{bmatrix}$ \\
$( 1 0 \bar{1} 1 ) [1 0 \bar{1} \bar{2}] $ & 0.137717 & $\begin{bmatrix} 0.125 & 0.65 & 0.693 \\ 0.65 & -0.625 & 0.4 \\ 0.812 & 0.47 & -0.5 \end{bmatrix}$ \\
$( 1 0 \bar{2} \bar{2} ) [1 1 \bar{2} \bar{3}] $ & 0.261649 & $\begin{bmatrix} -0.67 & 0.577 & 0.411 \\ 0.577 & 0 & 0.711 \\ 0.54 & 0.937 & -0.333 \end{bmatrix}$ \\
$( 1 1 \bar{2} 1) [\bar{1}\bar{1} 2 6] $ & 0.615764 & $\begin{bmatrix} -0.5 & 0.866 & 0.308 \\ 0.866 & 0.5 & 0.533 \\ 0.0 & 0.0 & -1.0 \end{bmatrix}$ \\
\hline
\end{tabular}
\label{tab:Shear and correspondence matrices for Mg}
\end{table}
\begin{minted}[fontsize=\scriptsize, frame=single]{fortran}
module math
implicit none
contains
function math_axisAngleToR(axis,omega) result(math_axisAngleToR1)
!------------------------------------------------
!> Function to generate rotation matrix around
!> arbitrary direction and arbitrary angle
!------------------------------------------------
implicit none
real, dimension(3), intent(in) :: axis
real, intent(in) :: omega
real, dimension(3) :: n
real :: norm,s,c,c1
real, dimension(3,3), parameter :: &
I3 = real(reshape([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],shape(I3))) !< 3x3 Identity
real, dimension(3,3) :: math_axisAngleToR1
norm = norm2(axis)
wellDefined: if (norm > 1.0e-8) then
n = axis/norm ! normalize axis to be sure
s = sin(omega)
c = cos(omega)
c1 = 1.0 - c
math_axisAngleToR1(1,1) = c + c1*n(1)**2.0
math_axisAngleToR1(1,2) = c1*n(1)*n(2) - s*n(3)
math_axisAngleToR1(1,3) = c1*n(1)*n(3) + s*n(2)
math_axisAngleToR1(2,1) = c1*n(1)*n(2) + s*n(3)
math_axisAngleToR1(2,2) = c + c1*n(2)**2.0
math_axisAngleToR1(2,3) = c1*n(2)*n(3) - s*n(1)
math_axisAngleToR1(3,1) = c1*n(1)*n(3) - s*n(2)
math_axisAngleToR1(3,2) = c1*n(2)*n(3) + s*n(1)
math_axisAngleToR1(3,3) = c + c1*n(3)**2.0
else wellDefined
math_axisAngleToR1 = I3
endif wellDefined
end function
end module math
program corresponcence_matrix
use math
implicit none
integer, dimension(4) :: &
active = [6,6,6,6], & !< number of active twin systems
potential = [6,6,6,6] !< all the potential twin systems
real, dimension(3) :: &
direction, normal
real, dimension(3,24) :: normal_vector, direction_vector
real, dimension(3,3,24) :: SchmidMatrix, corresponcenceMatrix
real, dimension(24) :: characteristicShear
real :: cOverA = 1.6235
real :: pi = 3.14159274
real, dimension(8,24) :: &
system = reshape(real([&
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
-1, 0, 1, 1, 1, 0, -1, 2, & !
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
! tension in Co, Re, and Zr
-1, -1, 2, 6, 1, 1, -2, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! compression in Mg
1, 0, -1, -2, 1, 0, -1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
! compression in Ti and Zr
1, 1, -2, -3, 1, 1, -2, 2, &
-1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
2, -1, -1, -3, 2, -1, -1, 2 &
]),shape(system))
real, dimension(3,3), parameter :: &
I3 = real(reshape([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],shape(I3))) !< 3x3 Identity
integer :: &
a, & !< index of active system
p, & !< index in potential system matrix
f, & !< index of my family
s, & !< index of my system in current family
f1, s1, e1, i, j, k !< indices for similar loops
!-----------------------------------------------------------
!> Normal vector to twin plane and direction vector
!> of the twin
!-----------------------------------------------------------
a = 0
do f = 1, size(active,1) !< Active Twin Modes
do s = 1, active(f) !< Active twin systems
a = a + 1
p = sum(potential(1:f-1))+s
! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(p/a)])
direction = [ system(1,p)*1.5, &
(system(1,p)+2.0*system(2,p))*sqrt(0.75), &
system(4,p)*cOverA ]
! plane (hkil)->(h (h+2k)/sqrt(3) l/(p/a))
normal = [ system(5,p), &
(system(5,p)+2.0*system(6,p))/sqrt(3.0), &
system(8,p)/cOverA ]
normal_vector(1:3,a) = normal /norm2(normal)
direction_vector(1:3,a) = direction / norm2(direction)
end do
end do
!-----------------------------------------------------------
!> Magnitude of Characteristic shear for twinning modes
!-----------------------------------------------------------
do f1 = 1,size(active,1) !< Active twin modes
s1 = sum(active(:f1-1)) + 1
e1 = sum(active(:f1))
select case(f1)
case (1)
characteristicShear(s1:e1) = (3.0-cOverA**2)/sqrt(3.0)/cOverA
case (2)
characteristicShear(s1:e1) = 1.0/cOverA
case (3)
characteristicShear(s1:e1) = (4.0*cOverA**2-9.0)/sqrt(48.0)/cOverA
case (4)
characteristicShear(s1:e1) = 2.0*(cOverA**2-2.0)/3.0/cOverA
end select
enddo
!> Write results for characteristic shear
write(6,*)'characteristic shear, for [1, 0, -1, 1],(-1, 0, 1, 2)'
write(6,*)characteristicShear(4)
write(6,*)'characteristic shear, for [-1, -1, 2, 6],(1, 1, -2, 1)'
write(6,*)characteristicShear(7)
write(6,*)'characteristic shear, for [1, 0, -1, -2],(1, 0, -1, 1)'
write(6,*)characteristicShear(13)
write(6,*)'characteristic shear, for [1, 1, -2, -3],(1, 1, -2, 2)'
write(6,*)characteristicShear(19)
!---------------------------------------------------------------
!> SchmidMatrix = Outer product of direction and normal vectors.
!---------------------------------------------------------------
do i = 1, sum(active)
forall(j=1:3, k=1:3) &
SchmidMatrix(j,k,i) = direction_vector(j,i) * &
normal_vector(k,i)
enddo
!--------------------------------------------------------------
!> Correspondence Matrix = Reorientation * Shear
!--------------------------------------------------------------
do i = 1, sum(active)
corresponcenceMatrix(1:3,1:3,i) = matmul(math_axisAngleToR &
(normal_vector(1:3,i),pi),&
I3+characteristicShear(i) &
*SchmidMatrix(1:3,1:3,i))
enddo
!> Write results for Correspondence Matrix
write(6,*)'correspondence matrix for [1, 0, -1, 1],(-1, 0, 1, 2)'
write(6,*)corresponcenceMatrix(1:3,1:3,4)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [-1, -1, 2, 6],(1, 1, -2, 1)'
write(6,*)corresponcenceMatrix(1:3,1:3,7)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [1, 0, -1, -2],(1, 0, -1, 1)'
write(6,*)corresponcenceMatrix(1:3,1:3,13)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [1, 1, -2, -3],(1, 1, -2, 2)'
write(6,*)corresponcenceMatrix(1:3,1:3,19)
end program corresponcence_matrix
\end{minted}